1. (a) The battery on your car has a rating stated in ampere-minutes which permits you to
estimate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 ampere-minute 12
volt battery?

Answers

Answer 1

Answer:

Energy is stored by a 50 ampere-minute 12

volt battery is approximately = 36,000 J = 36 kJ

Explanation:

Power in electrical circuits is given as

Power = IV

But power generally is defined as energy expended per unit time

Power = (Energy/time)

Energy = Power × Time

Energy = IV × Time

Energy = (I.t × V)

I.t = 50 Ampere-minute = 50 × 60 = 3000 Ampere-seconds

V = 12 V

Energy = 3,000 × 12 = 36,000 J = 36 kJ

Hope this Helps!!!


Related Questions

Space-faring astronauts cannot use standard weight scales (since they are constantly in free fall) so instead they determine their mass by measuring the period of oscillation when sitting in a chair connected to a spring. Suppose a chair is connected to a spring with a spring constant of 600 N/m. If the empty chair oscillates with a period of 0.9s, what is the mass of an astronaut who oscillates with a period of 2.0 s while sitting in the chair

Answers

Answer:

ma = 48.48kg

Explanation:

To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:

[tex]T=2\pi\sqrt{\frac{m_c}{k}}[/tex]     (1)

mc: mass of the chair

k: spring constant = 600N/m

T: period of oscillation of the chair = 0.9s

You solve the equation (1) for mc, and then you replace the values of the other parameters:

[tex]m_c=\frac{T^2k}{4\pi^2}=\frac{(0.9s)^2(600N/m)}{4\pi^2}=12.31kg[/tex]    (2)

Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:

T': period of chair when the astronaut is sitting = 2.0s

M: mass of the astronaut plus mass of the chair = ?

[tex]T'=2\pi\sqrt{\frac{M}{k}}\\\\M=\frac{T'^2k}{4\pi^2}=\frac{(2.0s)^2(600N/m)}{4\pi^2}\\\\M=60.79kg[/tex] (3)

Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

[tex]m_a=M-m_c=60.79kg-12.31kg=48.48kg[/tex]

The mass of the astronaut is 48.48 kg

a 15-nC point charge is at the center of a thin spherical shell of radius 10cm, carrying -22nC of charge distributed uniformly over its surface. find the magnitude and direction of the electric field (a) 2.2cm,(b)5.6cm,and (c)14 cm from the point charge.

Answers

Answer:

A) E = 278925.62 N/C with direction; radially out.

B) E = 43048.47 N/C with direction radially out.

C) E = -3214.29 N/C with direction radially in.

Explanation:

From Gauss' Law, the Electric field for any spherically symmetric charge or charge distribution is the same as the point charge formula. Thus;

E = kQ/r²

where;

Q is the net charge within the distance r.

We are given the charge Q = 15-nC and

spherical shell of radius 10cm

A) The distance r = 2.2 cm = 0.022 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C

While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²

E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²

E = 278925.62 N/C

This will be radially out ,since the net charge is positive.

B) The distance r = 5.6 cm = 0.056 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C

While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²

E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²

E = 43048.47 N/C

This will be radially out ,since the net charge is positive.

C) The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;

Q = 15 nC - 22 nC

Q = -7 nC = -7 x 10^(-9) C

and;

E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²

E = -3214.29 N/C

This will be radially in, since the net charge is negative. You can indicate this with a negative answer.

A) when E is = 278925.62 N/C with direction; radially out.B) When E is = 43048.47 N/C with direction radially out. C) When E is = -3214.29 N/C with direction radially in.When From Gauss' Law, also the Electric field for any spherically symmetric charge or also that charge distribution is the same as the point charge formula. Thus;Then E = kQ/r²After that Q is the net charge within the distance r.Then We are given the charge Q = 15-nC and also a spherical shell of a radius 10cm

A) When The distance r is = 2.2 cm = 0.022 m is between the surface and also the point charge, also that so only the point charge lies within this distance and also Q = 15 NC = 15 x 10^(-9) C

Then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²Then E = 278925.62 N/CThen This will be radially out since the net charge is positive.

B) When The distance r = 5.6 cm = 0.056 m is between the surface and also the point charge, so only the point charge lies within this distance and also Q = 15 nC = 15 x 10^(-9) C

then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²Then E = 43048.47 N/CAfter that This will be radially out since the net charge is positive.

C) Then when The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;

Then Q = 15 nC - 22 nCAfter that Q = -7 nC = -7 x 10^(-9) CWhen E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²Then E = -3214.29 N/C Thus, This will be radially in, since the net charge is negative.

Find out more information about magnitude here:

https://brainly.com/question/13502329

someone please help me out thanks

Answers

Answer:
Theory

Explanation:
The scientific form that is used to describe a testable model that seeks to explain natural phenomena is called theory.

Answer:

The answer is D)Theory

Explanation:

This is due because a theory is a scientific term and is a testable model that scientists seek to explain a phenomenon. You can also find out the answer by the process of elimination it can't be data because that would be something they already know and something they use to prove not explain. It can't be law because it isn't testable but can be used to explain. So that leaves you with two answers hypothesis and theory which are very similar but it isn't hypothesis because it isn't used to explain it to help the scientists come up with a theory and accumulate what might happen.

Blocks of mass 10, 30, and 90 kg are lined up from left to right in that order on a frictionless surface so each block is touching the next one. A rightward-pointing force of magnitude 32 N is applied to the left-most block. 1) What is the magnitude of the force that the left block exerts on the middle one

Answers

Answer:

32N

Explanation:

The Left force exerts an opposite horizontal force of 32N on the middle object

Convert from scientific notation to standard form
9.512 x 10-8

Answers

Standard form: 0.00000009512

Problem 3A solid uniform sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping down an inclined plane of vertical height 5.3 m. What is the angular speed of the sphere at the bottom of the inclined plane

Answers

Answer:

5.1 rad/s

Explanation:

Mechanical energy of the system is conserved since no external work is done on the sphere.

[tex]mgh = mv^2/2 + I\omega^2/2[/tex]

Substituting v = ωr and I = 2 m r^2/5, we get,

=> [tex]mgh=m(\omega r)^2/2 + (2\omega r^2/5)\omega^2/2[/tex]

=> [tex]mgh = m\omega^2r^2/2 + m\omega^2r^2/5[/tex]

=> [tex]gh =\omega^2r^2/2+\omega^2r^2/5[/tex]

=>  [tex]gh = 7\omega^2 r^2/10[/tex]

=>  [tex]\omega r = (10gh/7)^{1/2}[/tex]

=> [tex]\omega = (1/r)(10gh/7)^{1/2} = (1 / 1.7)(10\times 9.8\times 5.3 / 7)^{1/2}[/tex] = 5.1 rad/s

A small car and an SUV are at a stoplight. The car has a mass equal to half that of the SUV, and the SUV's engine can produce a maximum force equal to twice that of the car. When the light turns green, both drivers floor it at the same time. Which vehicle pulls ahead of the other vehicle after a few seconds?

Answers

Complete Question

A small car and an SUV are at a stoplight. The car has amass equal to half that of the SUV, and the SUV's engine can produce a maximum force equal to twice that of the car. When the light turns green, both drivers floor it at the same time. Which vehicle pulls ahead of the other vehicle after a few seconds?

a) It is a tie.

b) The SUV

c) The car

Answer:

The correct option is  a

Explanation:

From the question we are told that

     The mass of the car is [tex]m_c[/tex]

     The force of the car is  F

       The mass of the SUV is  [tex]m_s = 2 m_c[/tex]

       The force of the SUV is [tex]F_s = 2 F[/tex]

Generally force  of the car is mathematically represented as

        [tex]F= m_ca_c[/tex]

[tex]a_c[/tex] is acceleration of the car

Generally force  of the car is mathematically represented as

       [tex]F_s = m_s * a_s[/tex]

[tex]a_s[/tex] is acceleration of the SUV

=>   [tex]2 F = 2 m_c a_s[/tex]

       [tex]F = m_c a_s[/tex]

=>    [tex]m_c a_s = m_ca_c[/tex]

So  [tex]a_s = a_c[/tex]

  This means that the acceleration of both the car and the SUV are the same

The rate of heat conduction out of a window on a winter day is rapid enough to chill the air next to it. To see just how rapidly windows conduct heat, calculate the rate of conduction in watts through a 2.82 m2 window that is 0.675 cm thick if the temperatures of the inner and outer surfaces are 5.00°C and −10.0°C, respectively. This rapid rate will not be maintained — the inner surface will cool, and frost may even form. The thermal conductivity of glass is 0.84 J/(s · m · °C).

Answers

Answer:

Q = - 5264 W = - 5.26 KW

Here, negative sign indicates the outflow of heat

Explanation:

Fourier's Law of heat conduction, gives the following formula:

Q = - KAΔT/t

where,

Q = Rate of Heat Conduction out of window = ?

K = Thermal Conductivity of Glass = 0.84 W/m.°C

A =Surface Area of window = 2.82 m²

ΔT = Difference in Temperature of both sides of surface

ΔT = Inner Surface Temperature - Outer Surface Temperature= 5°C - (- 10°C)

ΔT = 15°C

t = thickness of window = 0.675 cm = 0.00675 m

Therefore,

Q = - (0.84 W/m.°C)(2.82 m²)(15°C)/0.00675 m

Q = - 5264 W = - 5.26 KW

Here, negative sign indicates the outflow of heat.

A quartz sphere is 14.0 cm in diameter. What will be its change in volume if its temperature is increased by 305°F? The coefficient of volume expansion of quartz is 1.50×10^6/°C. Answer in cm^3 .

Answers

Answer:

  0.365 cm³

Explanation:

The change in volume is found by multiplying the coefficient of expansion by the volume and the temperature change. The temperature change is in °F, but the expansion coefficient is per °C, so we need to convert the temperature scale in the computation.

  ΔV = V·Ce·ΔT

  = (π/6·d³)(1.5×10⁻⁶/°C)((5 °C)/(9 °F))(305 °F)

  = (1436.76 cm³)(1.5×10⁻⁶/°C)(169.44 °C)

  = 0.365 cm³ . . . . increase in volume

A hornet circles around a pop can at increasing speed while flying in a path with a 12-cm diameter. We can conclude that the hornet's wings must push on the air with force components that are Group of answer choices down and backwards. down, backwards, and outwards. down and inwards. down and outwards. straight down.

Answers

Answer:

down, backwards, and outwards.

Explanation:

For a hornet that is accelerating in flight, this means that there is a net forward motion at a relatively constant vertical height above the ground.

For this flight, the wings beat downwards to counter the weight of the hornet due to gravity, keeping it at that height above the floor.

For the hornet to accelerate forward, there has to be a net backwards force by the wing on the air. This backwards force accelerates tr forward due to the absence of an equal opposing force in the opposite direction save for a little drag.

The wings also beat with forces directed outwards to provide centripetal force to keep the hornet stable. The absence of this would cause it to spiral out of control.

. A ball weighs 120g on the earth surface,

i) What is its mass on the surface of the moon? 1mk

Answers

Answer:

WEIGHT ON MOON IS 0.2004N

Explanation:

mass of the body=120g=[tex]\frac{120}{1000}[/tex]kg=0.12kg (we will convert g into kg)

gravity on moon=1.67m/s²( to find the mass of anybody on another we should know its gravity)

as we know that (from the formula of weight)

weight=mass×gravity

w=mg

w=0.12kg²×1.67m/s²

w=0.2004N

An 89.2-kg person with a density 1025 kg/m3 stands on a scale while completely submerged in water. What does the scale read?

Answers

Answer:

89.11kg

Explanation:

Note an object weighs less when in a fluid and the weight of the volume of the fluid displaced is known as the upthrust.

Now, the person is going to displace the volume 89/1025 =0.087m3 { from density D = mass(M)/volume(V)}

The weight of the fluid displaced is the density of the fluid × volume of fluid displaced.

The weight of the fluid=0.087m3× 1kg/me = 0.087kg

Now the weight of the fluid displaced is referred to as the upthrust.

Now the real weight - the apparent weight = the upthrust.

Hence the apparent weight = real weight - upthrust

Apparent weight = 89.2-0.087 = 89.11kg

A population _____ follows a period of

Answers

A population decline follows a period of overshooting.

Answer:

a population increase

Explanation:

During the 20th century, the world population increased from 1.65 billion to 6 billion. In 1970, the world's population was half that of today. In less than 15 years, 47% of the population will live in areas already under heavy water stress. In Africa, between 75 and 250 million people will face growing shortages in 2020 due to climate change. The scarcity of some arid and semi-arid regions will have a decisive impact on migration.

A low C (f = 65Hz) is sounded on a piano. If the length of the piano wire is 2.0 m and its mass density is 5.0 g/m2, determine the tension of the wire.

Answers

Answer:

Tension of the wire(T) = 169 N

Explanation:

Given:

f = 65Hz

Length of the piano wire (L) = 2 m

Mass density = 5.0 g/m² = 0.005 kg/m²

Find:

Tension of the wire(T)

Computation:

f = v / λ

65 = v / 2L

65 = v /(2)(2)

v = 260 m/s

T = v² (m/l)

T = (260)²(0.005/2)

T = 169 N

Tension of the wire(T) = 169 N

A worker pushes on a crate that experiences a net force of 45.0 N. If it accelerates at 0.500 m/s2 what is the weight?

Answers

Answer:

882 N

Explanation:

F = ma

45.0 N = m (0.500 m/s²)

m = 90.0 kg

mg = 882 N

In a 2 dimensional Cartesian system, the x-component of a vector is known, and the angle between vector and x-axis is known. Which operation is used to calculate the magnitude of the vector? (taken with respect to the x-component)
a. dividing by cosine
b. dividing by sine
c. multiplying by cosine
d. multiplying by sine

Answers

Answer:

The correct answer is a

Explanation:

The cosine function is

      cos θ = ca / ​​H

done ca is the adjacent leg (x-axis) and H is the hypotenuse (vector module)

we clear

    H = ca / ​​cos θ

therefore, to find the magnitude of the vector, the cathete is divided into the cosine.

The correct answer is a

Consider two copper wires of equal cross-sectional area. One wire has 3 times the length of the other. How do the resistivities of these two wires compare?

Answers

Explanation:

The relation between resistance and resistivity is given by :

[tex]R=\rho \dfrac{l}{A}[/tex]

[tex]\rho[/tex] is resistivity of material

l is length of wire

A is area of cross section of wire

Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is

An underwater diver sees the sun at an apparent angle of 45.00 from the vertical. How far is the sun above the horizon? [n in water=1.333

Answers

Answer:

19.872 degrees

Explanation:

Mathematically;

Using Snell’s law

n1 sin A = n2 sinB

Where ;

n1 = refractive index in air = 1

n2 is refractive index in water = 1.33

A = ?

B = 45

Substituting the values in the equation;

1 sin A = 1.33 sin45

Sin A = 1.33 sin 45

A = arc sin (1.33 sin 45)

A = 70.12

Thus, the actual direction of the Sun with respect to the horizon = 90-A = 19.872 degrees

where would you expect to find vesicles of neurotransmitters
A. Synaptic gap
B. postsynaptic dendrites
C. Channels in the postsynaptic
D. Presynaptic terminal button

Answers

Answer:

D. Presynaptic terminal button

explanation:

Terminal Buttons are small knobs at the end of an axon that release chemicals called neurotransmitters. The terminal buttons form the Presynaptic Neuron

hope this helped!

Proposed Exercise - Mass Center of a Composite Body Determine the coordinates (x, y) of the center of mass of the body illustrated in the picture below

Answers

Answer:

x = 3.76 cm

y = 3.76 cm

Explanation:

This composite shape can be modeled as a square (7.2 cm × 7.2 cm) minus a quarter circle in the lower left corner (3.6 cm radius) and a right triangle in the upper right corner (3.6 cm × 3.6 cm).

The centroid of a square (or any rectangle) is at x = b/2 and y = h/2.

The centroid of a quarter circle is at x = y = 4r/(3π).

The centroid of a right triangle is at x = b/3 and y = h/3.

Build a table listing each shape, the coordinates of its centroid (x and y), and its area (A).  Use negative areas for the shapes that are being subtracted.

Next, multiply each coordinate by the area (Ax and Ay), sum the results (∑Ax and ∑Ay), then divide by the total area (∑Ax / ∑A and ∑Ay / ∑A).  The result will be the x and y coordinates of the center of mass.

See attached image.

Volume of an block is 5 cm3. If the density of the block is 250 g/cm3, what is the mass of the block ?​

Answers

Answer:

The mass of the block is 1250g.

Explanation:

Given that the formula for density is ρ = mass/volume. Then you have to substitute the values into the formula :

[tex]ρ = \frac{mass}{volume} [/tex]

Let density = 250,

Let volume = 5,

[tex]250 = \frac{m}{5} [/tex]

[tex]m = 250 \times 5[/tex]

[tex]m = 1250g[/tex]

An alpha particle has a charge of +2e and a mass of 6.64 x 10-27 kg. It is accelerated from rest through a potential difference of 1.2 x 106 V and then enters a uniform magnetic field whose strength is 2.2 T. The alpha particle moves perpendicular to the field. Calculate (a) the speed of the alpha particle, (b) the magnitude of the magnetic force exerted on it, and (c) the radius of its circular path.

Answers

Answer:

a) v = 1.075*10^7 m/s

b) FB = 7.57*10^-12 N

c) r = 10.1 cm

Explanation:

(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:

[tex]K=qV[/tex]          (1)

q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C

V: potential difference = 1.2*10^6 V

You replace the values of the parameters in the equation (1):

[tex]K=(3.2*10^{-19}C)(1.2*10^6V)=3.84*10^{-13}J[/tex]

The kinetic energy of the particle is also:

[tex]K=\frac{1}{2}mv^2[/tex]       (2)

m: mass of the particle = 6.64*10^⁻27 kg

You solve the last equation for v:

[tex]v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(3.84*10^{-13}J)}{6.64*10^{-27}kg}}\\\\v=1.075*10^7\frac{m}{s}[/tex]

the sped of the alpha particle is 1.075*10^6 m/s

b) The magnetic force on the particle is given by:

[tex]|F_B|=qvBsin(\theta)[/tex]

B: magnitude of the magnetic field = 2.2 T

The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

[tex]|F_B|=(3.2*10^{-19}C)(1.075*10^6m/s)(2.2T)=7.57*10^{-12}N[/tex]

the force exerted by the magnetic field on the particle is 7.57*10^-12 N

c) The particle describes a circumference with a radius given by:

[tex]r=\frac{mv}{qB}=\frac{(6.64*10^{-27}kg)(1.075*10^7m/s)}{(3.2*10^{-19}C)(2.2T)}\\\\r=0.101m=10.1cm[/tex]

the radius of the trajectory of the electron is 10.1 cm

The speed, magnetic force and radius are respectively; 10.75 * 10⁶ m/s; 7.57 * 10⁻¹² N; 0.101 m

What is the Magnetic force?

A) We know that the formula for kinetic energy can be expressed as;

K = qV

where;

q is charge of the particle = 2e = 2(1.6 × 10⁻¹⁹ C) = 3.2 × 10⁻¹⁹ C

V is potential difference = 1.2 × 10⁶ V

K = 3.2 × 10⁻¹⁹ *  1.2 × 10⁶

K = 3.84 × 10⁻¹³ J

Also, formula for kinetic energy is;

K = ¹/₂mv²

where v is speed

Thus;

v = √(2K/m)

v = √(2 * 3.84 × 10⁻¹³)/(6.64 * 10⁻²⁷)

v = 10.75 * 10⁶ m/s

B) The magnetic force is given by the formula;

F_b = qvB

F_b = (3.2 × 10⁻¹⁹ * 10.75 * 10⁶ * 2.2)

F_b = 7.57 * 10⁻¹² N

C) The formula to find the radius is;

r = mv/qB

r = (6.64 * 10⁻²⁷ * 10.75 * 10⁶)/(1.6 × 10⁻¹⁹ * 2.2)

r = 0.101 m

Read more about magnetic field at; https://brainly.com/question/7802337

For the parallel plates mentioned above, the DC power supply is set to 31.5 Volts and the plate on the right is at x = 14 cm. What is the magnitude of the electric field at a point on the x-axis where x = 7.0 cm? Answer with a number in the format ### in Newtons per Coulombs.

Answers

Note: The complete question is attached as a file to this solution. The parallel plate mentioned can be seen in this picture attached.

Answer:

E = 225 N/C

Explanation:

Note: At any point on the parallel plates of a capacitor, the electric field is uniform and equal.

Therefore, Electric field at x = 14 cm equals the electric field at x = 7 cm

V(x) = 31.5 Volts

x = 14 cm = 0.14 m

The magnitude of the electric field at any point between the parallel plate of the capacitor is given by the equation:

E = V(x)/d

E(x = 0.14) = 31.5/0.14

E(x=0.14) = 225 N/C

E(x=0.14) = E(x=0.07) = 225 N/C

the part of the brain stem called the has been shown to related to arousal in lab animals. when this part is stimulated the animal is awake when it is severed cut the animal goes into coma

Answers

Answer:

Its called PSY

Explanation: I so do not know why they named it this way but, hope i helped.

Find the displacement of a simple harmonic wave of amplitude 6.44 m at t = 0.71 s. Assume that the wave number is 2.34 m-1, the angular frequency is 2.88 rad/s, and that the wave is propagating in the +x direction at x = 1.21 m.
A) 4.55 m.
B) 1.05 m.
C) 3.54 m.
D) 2.25 m.

Answers

Answer:

Letter A. [tex]y=4.55 m[/tex]

Explanation:

Let's use the wave equation:

[tex]y=Asin(kx-\omega t)[/tex]

A is the amplitude (A=6.44 m)t is the time (t=0.71 s)k is the wave number (k=2.34 1/m)ω is the angular frequency (ω=2.88 rad/s)x is the propagation of the x direction  (x=1.21 m)

Therefore the displacement y will be:

[tex]y=6.44*sin(2.34*1.21-2.88*0.71)[/tex]

[tex]y=4.55 m[/tex]

The answer is letter A.

I hope it helps you!

Answer:

Explanation:

Find the displacement of a simple harmonic wave of amplitude 6.44 m at t = 0.71 s. Assume that the wave number is 2.34 m-1, the angular frequency is 2.88 rad/s, and that the wave is propagating in the +x direction at x = 1.21 m.

Amplitude (A) of the simple harmonic wave = 6.44 m

wave number (k) of the given wave = 2.34 m-1

Angular frequency (ω) of the given wave = 2.88 rad/s

Displacement x = 1.21 m and time t = 0.71 s

Then the general equation for the displacement of the given simple harmonic wave at given x and time t is given by

y = Asin(kx - ωt)

= (6.44 m)sin[(2.34 m-1)(1.21 m) - (2.88 rad/s)(0.71 s)]

Y=6.44sin(0.7866 rad)

0.7866rad*(180 degrees/pi rad) =45.1

Y=6.44sin(45.1)

Y=4.55m

A projectile is fired from ground level with an initial speed of 55.6 m/s at an angle of 41.2° above the horizontal. (a) Determine the time necessary for the projectile to reach its maximum height. (b) Determine the maximum height reached by the projectile. (c) Determine the horizontal and vertical components of the velocity vector at the maximum height. (d) Determine the horizontal and vertical components of the acceleration vector at the maximum heigh

Answers

Answer:

(a) t = 3.74 s

(b) H = 136.86 m

(c) Vₓ = 41.83 m/s,  Vy = 0 m/s

(d) ax = 0 m/s²,  ay = 9.8 m/s²

Explanation:

(a)

Time to reach maximum height by the projectile is given as:

t = V₀ Sinθ/g

where,

V₀ = Launching Speed = 55.6 m/s

Angle with Horizontal = θ = 41.2°

g = 9.8 m/s²

Therefore,

t = (55.6 m/s)(Sin 41.2°)/(9.8 m/s²)

t = 3.74 s

(b)

Maximum height reached by projectile is:

H = V₀² Sin²θ/g

H = (55.6 m/s)² (Sin²41.2°)/(9.8 m/s²)

H = 136.86 m

(c)

Neglecting the air resistance, the horizontal component of velocity remains constant. This component can be evaluated by the formula:

Vₓ = V₀ₓ = V₀ Cos θ

Vₓ = (55.6 m/s)(Cos 41.2°)

Vₓ = 41.83 m/s

Since, the projectile stops momentarily in vertical direction at the highest point. Therefore, the vertical component of velocity will be zero at the highest point.

Vy = 0 m/s

(d)

Since, the horizontal component of velocity is uniform. Thus there is no acceleration in horizontal direction.

ax = 0 m/s²

The vertical component of acceleration is always equal to the acceleration due to gravity during projectile motion:

ay = 9.8 m/s²

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

Answers

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  [tex]Q =2.094 C[/tex]

Explanation:

From the question we are told that

    The diameter of the wire is  [tex]d = 0.205cm = 0.00205 \ m[/tex]

     The radius of  the wire is  [tex]r = \frac{0.00205}{2} = 0.001025 \ m[/tex]

     The resistivity of aluminum is [tex]2.75*10^{-8} \ ohm-meters.[/tex]

       The electric field change is mathematically defied as

         [tex]E (t) = 0.0004t^2 - 0.0001 +0.0004[/tex]

     

Generally the charge is  mathematically represented as

       [tex]Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt[/tex]

Where A is the area which is mathematically represented as

       [tex]A = \pi r^2 = (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2[/tex]

 So

       [tex]\frac{A}{\rho} = \frac{3.3 *10^{-6}}{2.75 *10^{-8}} = 120.03 \ m / \Omega[/tex]

Therefore

      [tex]Q = 120 \int\limits^{t}_{0} { E(t) } \, dt[/tex]

substituting values

      [tex]Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt[/tex]

     [tex]Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.[/tex]

From the question we are told that t =  5 sec

           [tex]Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.[/tex]

          [tex]Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }[/tex]

         [tex]Q =2.094 C[/tex]

     

The charge (Q) passing through a cross-section of the conductor between time 0 seconds and time 5 seconds is 2.094 Coulomb.

Given the following data:

Diameter of wire = 0.205 centimeters.Resistivity of aluminum = [tex]2.75\times 10^{-8}[/tex] Ohm-meters.[tex]E(t)=0.0004t^2-0.0001t+0.0004[/tex] Newton per coulomb.

Conversion:

Diameter of wire = 0.205 cm to m = 0.00205 meter.

Radius = [tex]\frac{Diameter}{2} =\frac{0.00205}{2} =0.001025\;meter[/tex]

To determine the charge (Q) passing through a cross-section of the conductor between time 0 seconds and time 5 seconds, we would apply Gauss's law in an electric field for a surface charge:

First of all, we would find the area of the wire.

[tex]Area = \pi r^2\\\\Area = 3.142 \times 0.001025^2\\\\Area = 3.3 \times 10^{-6}\;m^2[/tex]

Mathematically, Gauss's law in an electric field for a surface charge is given by the formula:

[tex]Q = \int\limits^t_0 {\frac{A}{\rho } E(t)} \, dt[/tex]

Where:

A is the area of a conductor.[tex]\rho[/tex] is the resistivity of a conductor.t is the time.E is the electric field.

Substituting the given parameters into the formula, we have;

[tex]Q= \int\limits^t_0 {\frac{3.3 \times 10^{-6}}{2.75\times 10^{-8} } (0.0004t^2-0.0001t+0.0004)} \, dt\\\\Q=120\int\limits^t_0 1{ (0.0004t^2-0.0001t+0.0004)} \, dt[/tex]

[tex]Q=120(\frac{0.0004t^3}{3} -\frac{0.0001t^2}{2} +0.0004t |\left{5} \atop {0} \right[/tex]

When t = 5 seconds:

[tex]Q=120(\frac{0.0004[5]^3}{3} -\frac{0.0001[5]^2}{2} +0.0004[5])\\\\Q=120(\frac{0.03}{3} -\frac{0.0025}{2} +0.002)\\\\Q=120(0.0167-0.00125+0.002)\\\\Q=120(0.01745)[/tex]

Q = 2.094 Coulomb.

Find more information: https://brainly.com/question/18214726

A 54.0 kg ice skater is gliding along the ice, heading due north at 4.10 m/s . The ice has a small coefficient of static friction, to prevent the skater from slipping sideways, but Uk = 0. Suddenly, a wind from the northeast exerts a force of 3.70 N on the skater.a) Use work and energy to find the skater's speed after gliding 100 m in this wind.b) What is the minimum value of Ug that allows her to continue moving straight north?

Answers

Answer:

a. 2.668 m/s

b. 0.00494

Explanation:

The computation is shown below:

a. As we know that

[tex]W = F\times d[/tex]

[tex]KE = 0.5\times m\times v^2[/tex]

As the wind does not move the skater to the east little work is performed in this direction. All the work goes in the direction of the N-S. And located in that direction the component of the Force.

F = 3.70 cos 45 = 2.62 N

[tex]W = F \times d = 2.62 N \times 100 m[/tex]

[tex]W = 261.6 N\times m[/tex]

We know that

KE1 = Initial kinetic energy

KE2 = kinetic energy following 100 m

The energy following 100 meters equivalent to the initial kinetic energy less the energy lost to the work performed by the wind on the skater.

So, the equation is

KE2 = KE1 - W

[tex]0.5 m\times v2^2 = 0.5 m\ v1^2 - W[/tex]

Now solve for v2

[tex]v2 = \sqrt{v1^2 - {\frac{2W}{M}}}[/tex]

[tex]= \sqrt{4.1 m/s)^2 - \frac{2 \times 261.6 N\times m}{54.0 kg}}[/tex]

= 2.668 m/s

b. Now the minimum value of Ug is

As we know that

Ff = force of friction

Us = coefficient of static friction

N = Normal force = weight of skater

So,

[tex]Ff = Us\times N[/tex]

Now solve for Us

[tex]= \frac{Ff}{N}[/tex]

[tex]= \frac{3.70 N \times cos 45 }{54.0 kg \times 9.81 m/s^2}[/tex]

= 0.00494

During a football game, a receiver has just caught a pass and is standing still. Before he can move, a tackler, running at a velocity of 2.60 m/s, grabs and holds onto him so that they move off together with a velocity of 1.30 m/s. If the mass of the tackler is 122 kg, determine the mass of the receiver. Assume momentum is conserved.

Answers

Answer:

122kg

Explanation:

Using the law of conservation of momentum which states that 'the sum of momentum of bodies before collision is equal to their sum after collision. The bodies will move together with a common velocity after collision.

Momentum = Mass * Velocity

Before collision;

Momentum of receiver m1u1= 0 kgm/s (since the receiver is standing still)

Momentum of the tackler

m2u2 = 2.60*122 = 317.2 kgm/s

where m2 and u2 are the mass and velocity of the tacker respectively.

Sum of momentum before collision = 0+317.2 = 317.2 kgm/s

After collision

Momentum of the bodies = (m1+m2)v

v = their common velocity

m1 = mass of the receiver

Momentum of the bodies = (122+m1)(1.30)

Momentum of the bodies = 158.6+1.30m1

According to the law above;

317.2 = 158.6+1.30m1

317.2-158.6 = 1.30m1

158.6 = 1.30m1

m1 = 158.6/1.30

m1 = 122kg

The mas of the receiver is 122kg

An object is thrown vertically and has an upward velocity of 18 m/s when it reaches one fourth of its maximum height above its launch point. What is the initial (launch) speed of the object

Answers

Answer:

v = 25.45 m/s

Explanation:

In order to calculate the initial speed of the object, you take into account the formula for the maximum height reaches by the object. Such a formula is given by:

[tex]h_{max}=\frac{v_o^2}{g}[/tex]   (1)

vo: initial speed of the object = 18 m/s

g: gravitational acceleration = 9.8 m/s²

Furthermore you use the following formula for the final speed of the object:

[tex]v^2=v_o^2-2gh[/tex]       (2)

h: height

You know that the speed of the object is 18m/s when it reaches one fourth of the maximum height. You use this information, and you replace the equation (1) in to the equation (2), as follow:

[tex]v^2=v_o^2-2g(\frac{h_{max}}{4})=v_o^2-\frac{1}{2}g(\frac{v_o^2}{g})\\\\v^2=v_o^2-\frac{1}{2}v_o^2=\frac{1}{2}v_o^2[/tex]

Then, you solve the previous result for vo:

[tex]v_o=\sqrt{2}v=\sqrt{2}(18m/s)=25.45\frac{m}{s}[/tex]

The initial speed of the object was 25.45 m/s

Other Questions
A marketing consultant was hired to visit a random sample of five sporting goods stores across the state of California. Each store was part of a large franchise of sporting goods stores. The consultant taught the managers of each store better ways to advertise and display their goods. The net sales for 1 month before and 1 month after the consultant's visit were recorded as follows for each store (in thousands of dollars):_________.Before visit: 57.1 94.6 49.2 77.4 43.2After visit: 63.5 101.8 57.8 81.2 41.9Do the data indicate that the average net sales improved? (Use a= 0.05) Thucydides wrote about A:the Battle of Marathon B: Alexander the Great's conquests C:the Persian War D:the Peloponnesian War Do not answer or report What is -6 plus -6 An experimental procedure says to accurately weigh approximately 1 g ofsubstance on analytical balance. Which of the following measurements areconsistent with these instructions? Select all that apply.1.0456 g1.0 g0.9811g1 g1.01gO 0.99 Please help me with this problem Is the following sentence a sentence beginning with a prepositional phrase? Against the wall, I sat curled up in a ball like an armadillo, as a stream of tears ran down my face. A movie studio sells the latest movie on DVD to VideosRUs at $10 per DVD. The studio's cost of production is $1 per DVD. VideosRUs prices the videos at $19.99 to its customers. The studio offers to buy back unsold DVDs for $5. The studio must pay $.50 disposal fee for all returned DVDs. How many videos should VideosRUs order if the current sales forecast for the DVD is that demand will be normal with a mean of 10,000 and a standard deviation of 5,000 Researchers must protect participants and be aware of appropriatemethods for obtaining information. What ethical considerations are important to research? In about two pages, write an analysis of the ethical concerns in the 3 diverse psychological research studies below. Be sure to include a paragraph of overall ethical consideration.Haslam, S. A., & Reicher, S. D. (2012). Contesting the 'nature' of conformity: What Milgram and Zimbardo's studies really show. Plos Biology, 10(11), doi:10.1371/journal.pbio.1001426Larsen, K. S. (1974). Conformity in the Asch experiment. The Journal Of Social Psychology, 94(2), 303-304. doi:10.1080/00224545.1974.9923224Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., & ... Shoda, Y. (2011). 'Willpower' over the life span: Decomposing self-regulation. Social Cognitive And Affective Neuroscience, 6(2), 252-256. Which of the following is a polynomial?O A. ( - 4)(x + 1)O B. x-2-1O c. 1+2O D. x-2 What is one technique that Martin Luther King Jr. uses in his speech to make it more impactful to his audience? What is the impact of that technique? Teena's calculator is broken and does not have key 9 that works! With this broken calculator she found out the value of (-35) x 99. Explain your reasoning carefully and clearly Sarbanes-Oxley Act requires each of the following: (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect.)Required information An internal control system consists of the policies and procedures managers use to protect assets, ensure reliable accounting, promote efficient operations, and uphold company policies. It can prevent avoidable losses and help managers both plan operations and monitor company and human performance. Principles of good internal control include establishing responsibilities, maintaining adequate records, insuring assets and bonding employees, separating recordkeeping from custody of assets, dividing responsibilities for related transactions, applying technological controls, and performing regular independent reviews. Knowledge Check 01 Sarbanes-Oxley Act requires each of the following: (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark willl be automatically graded as incorrect.) An effective internal control ? Light penalties for violators Auditors must evaluate internal controls Auditor's work overseen by Public Accounting Board Please answer correctly!!!!!! Will mark brainliest !!!!!!!!!!! The slope of the rafter is 15 m.Half the run of the rafter measure 12m.find the height of the ridge from the base What is the name of the official policy used by South Africa between 1948 and 1994 to separate races? A. apartheid B. Afrikaans C. verwoerd D. xantu Please answer this correctly What is the domain of f(x) = 3x 2? {x | x > 0} {x | x < 0} {x | x = 0} {x | x is a real number} The establishment of judicial review in Marbury v. Madison (1803) gave federal courts the authority to(1) Decide whether a law is constitutional(2) Create lower courts(3) Approve foreign treaties(4) Appoint judges to lifetime terms What is an advantage of telling a story from a first-person point of view?A. Conveying each story event in the most realistic and concrete waypossibleB. Showing multiple characters' perspectives on the same event orsituationC. Avoiding common pitfalls in story writing, such as telling ratherthan showingD. Creating suspense by limiting the reader's perspective on thestory's events If r = 6 units and h = 13 units , what is the volume of the cylinder shown above? Use 3.14 for pi