Answer:
Initial velocity u = 60 ft/s
Explanation:
Given:
Deceleration a = -36 ft/s²
Distance covered s =50ft
Final velocity v = 0 ft/s
Find:
Initial velocity u
Computation:
Using third equation of motion;
v² = u² + 2as
0² = u² + 2(-36)(50)
0 = u² - 3600
u² = 3600
u = 60 ft/s
Initial velocity u = 60 ft/s
What is known as the amount of mass in
a given volume?
A. density
B. pressure
C. surface tension
D. mass pressure
I’ll mark you as brinlist please help.
Answer:
245 divided by 5.14=47.6653696 or 47.66
Explanation:
Blue light (450 nm) and orange light
(625 nm) pass through a diffraction
grating with d = 2.88 x 10-6 m. What is
the angular separation between them
for m = 1?
Answer:
3.54
Explanation:
some nerd thing I found it on Yahoo answers
Answer:
3.54º
Explanation:
Find the blue θ first
sin⁻¹(540x10⁻⁹/2.88x10⁻⁶)=8.99°
Then find the orange θ
sin⁻¹(625x10⁻⁹/2.88x10⁻⁶)=12.53°
Take the differences and subtract
12.53°-8.99°=3.54°
As the time period of an object’s momentum change becomes longer, the force
needed to cause this change becomes _______________________.
Answer:
Speesd
Explanation:
An electron is travelling in the positive x direction. A uniform electric field is in the negative y direction. If a uniform magnetic field with the appropriate magnitude and direction also exists in the region, the total force on the electron will be zero. The appropriate direction for the magnetic field is:Group of answer choicesthe negative y directioninto the pageout of the pagethe negative x directionthe positive y direction
Answer:
into the page
Explanation:
Since the uniform electric field is in the negative y direction so its is -E and the electron is travelling in the positive x direction, it experiences an electric force F = -e × -E = + eE, so the electric force is in the positive y direction. Now since the net force on the electron is zero in the region of the magnetic field, it follows that the direction of the magnetic force is opposite to that of the electric force. Since the electric force is in the positive y direction, the magnetic force is in the negative y direction.
By the right hand rule, since the magnetic force is in the negative y direction and the electron moves in the positive x direction, it follows that the magnetic field is in the positive z direction, into the page.
Establishing a potential difference The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1000 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 60 volts
Answer:
[tex]1.62\times 10^{-8}\ \text{s}[/tex]
Explanation:
[tex]\epsilon_0[/tex] = Vacuum permittivity = [tex]8.854\times 10^{-12}\ \text{F/m}[/tex]
[tex]A[/tex] = Area = [tex]10\times 2\times 10^{-4}\ \text{m}^2[/tex]
[tex]d[/tex] = Distance between plates = 1 mm
[tex]V_c[/tex] = Changed voltage = 60 V
[tex]V[/tex] = Initial voltage = 100 V
[tex]R[/tex] = Resistance = [tex]1000\ \Omega[/tex]
Capacitance is given by
[tex]C=\dfrac{\epsilon_0A}{d}\\\Rightarrow C=\dfrac{8.854\times 10^{-12}\times 10\times 2\times 10^{-4}}{1\times 10^{-3}}\\\Rightarrow C=1.7708\times 10^{-11}\ \text{F}[/tex]
We have the relation
[tex]V_c=V(1-e^{-\dfrac{t}{CR}})\\\Rightarrow e^{-\dfrac{t}{CR}}=1-\dfrac{V_c}{V}\\\Rightarrow -\dfrac{t}{CR}=\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-CR\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-1.7708\times 10^{-11}\times 1000\ln(1-\dfrac{60}{100})\\\Rightarrow t=1.62\times 10^{-8}\ \text{s}[/tex]
The time taken for the potential difference to reach the required level is [tex]1.62\times 10^{-8}\ \text{s}[/tex].
Larry is making a model of the Solar System. What objects will Larry need to put in his model of the Solar System? Name three types of objects. Describe where Larry should place Earth within the Solar System. es ) your answer below:
Answer:
1) It seems that he would need the central gravitational force
(the sun)
2) Also the planets would need to be included (orbits around the sun)
Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3. Then, many of the planets have significant objects (moons) rotating about them.
Those would seem to be objects to be included in a model of the solar system.
1) He would need the central gravitational force (the sun)
2) The planets would need to be included: Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3) Many of the planets have specific moons rotating about them.
Larry should put the Earth between the planets Venus, and Mars.
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV
Electricity is distributed from electrical substations to neighborhoods at 13000 V. This is a 60 Hz oscillating (AC) voltage. Neighborhood transformers, seen on utility poles, step this voltage down to the 120 V that is delivered to your house.
A. How many turns does the primary coil on the transformer have if the secondary coil has 120 turns?
Answer:
the number of turns in the primary coil is 13000
Explanation:
Given the data in the question;
V₁ = 13000 V
V₂ = 120 V
N₁ = ?
N₂ = 120 turns
the relation between the voltages and the number of turns in the primary and secondary coils can be expressed as;
V₁/V₂ = N₁/N₂
V₁N₂ = V₂N₁
N₁ = V₁N₂ / V₂
so we substitute
N₁ = (13000 V × 120 turns) / 120 V
N₁ = 1560000 V-turns / 120 V
N₁ = 13000 turns
Therefore, the number of turns in the primary coil is 13000
What is wrong with the following momentum value: 25 kg*m/s
Answer:
25N/s or 25kg*m/s^2
Explanation:
It is written wrong because the unit of momentum is kgm/s^2 or N/s
A van has a weight of 4000 lb and center of gravity at Gv. It carries a fixed 900 lb load which has a center of gravity at Gl. If the van is traveling at 40 ft/s, determine the distance it skids before stopping. The brakes cause all the wheels to lock or skid. The coefficient of kinetic friction between the wheels and the pavement is . Assume that the two rear wheels are one normal, NB, and the two front wheels are one normal, NA.
Answer:
x = 25 / μ [ ft]
Explanation:
To solve this exercise we can use Newton's second law.
Let's set a reference system where the x axis is parallel to the road
Y axis
N_B + N_A - W_van - W_load = 0
N_B + N_A = W_van + W_load
X axis
fr = ma
a = fr / m
the total mass is
m = (W_van + W_load) / g
the friction force has the expression
fr = μ N_{total}
fr = μy (W_van + W_load)
we substitute
a = μ (W_van + W_load) [tex]\frac{g}{W_van + W_load}[/tex]
a = μ g
taking the acceleration let's use the kinematic relations where the final velocity is zero
v² = v₀² - 2 a x
0 = v₀² -2a x
x = [tex]\frac{v_o^2}{2a}[/tex]
x = [tex]\frac{v_o^2}{2 \mu g}[/tex]
x = [tex]\frac{40^2}{2 \ 32 \ \mu}[/tex]
x = 25 / μ [ ft]
Which factor affects the color of the star?
Luminosity
Temperature
Apparent Magnitude
None of the aobve
Answer:
temperature
Explanation:
if you look at a hertzsprung-russel diagram. you can understand how I got that answer