A factory worker pushes a 30.0 kg crate a distance of 3.7 m along a level floor at constant velocity by pushing downward at an angle of 30∘ below the horizontal. The coefficient of kinetic friction between the crate and floor is 0.25.

Required:
a. What magnitude of force must the worker apply?
b. How much work is done on the crate by this force?
c. How much work is done on the crate by friction?
d. How much work is done on the crate by the normal force? By gravity?
e. What is the total work done on the crate?

Answers

Answer 1

Answer:

a) [tex]F = 210.803\,N[/tex], b) [tex]W_{F} = 779.971\,J[/tex], c) [tex]W_{f} = 235.683\,J[/tex], d) [tex]W_{N} = 0\,J[/tex]; [tex]W_{g} = 544.289\,J[/tex], e) [tex]W_{net} = 0\,J[/tex]

Explanation:

a) The net force exerted on the crate is:

[tex]\Sigma F = F - m\cdot g \cdot \sin \theta - \mu_{k}\cdot m\cdot g \cdot \cos \theta = 0[/tex]

The magnitud of the force that the work must apply to the crate is:

[tex]F = m\cdot g \cdot \sin \theta + \mu_{k}\cdot m\cdot g \cdot \cos \theta[/tex]

[tex]F = (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \sin 30^{\circ} + 0.25 \cdot (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}[/tex]

[tex]F = 210.803\,N[/tex]

b) The work done on the crate due to the external force is:

[tex]W_{F} = (210.803\,N)\cdot (3.7\,m)[/tex]

[tex]W_{F} = 779.971\,J[/tex]

c) The work done on the crate due to the external force is:

[tex]W_{f} = (63.698\,N)\cdot (3.7\,m)[/tex]

[tex]W_{f} = 235.683\,J[/tex]

d) The work done on the crate due the normal force is zero, since such force is perpendicular to the motion direction.

[tex]W_{N} = 0\,J[/tex]

And, the work done by gravity is:

[tex]W_{g} = (147.105\,N)\cdot (3.7\,m)[/tex]

[tex]W_{g} = 544.289\,J[/tex]

e) Lastly, the total work done is:

[tex]W_{net} = W_{F} - W_{f} - W_{g} - W_{N}[/tex]

[tex]W_{net} = 779.971\,J - 235.683\,J - 0\,N - 544.289\,J[/tex]

[tex]W_{net} = 0\,J[/tex]


Related Questions

commune time to work ( physics) i need help pls :(​

Answers

I would think that the answer is C
Plz mark as brainliest!

Mark Watney (Matt Damon in the Martian movie) and Marvin the Martian (Looney Tunes cartoon character) are having an argument on the surface of Mars (negligible air resistance). They are testing out their new potato launcher that fires projectiles at a constant speed. Mark launches his potato at an angle of 60◦ and Marvin launches his identical potato at an angle of 30◦ . Without any calculations try to answer the following questions, and justify each answer.

(A) Which potato lands farther away from the launcher (potatoes are launched from ground level)?

(B) Which potato spends more time in the air before hitting the ground

(C) Which potato has a greater speed just before it hits the ground?

Answers

Answer:

A) The two potatoes cover the same horizontal distance from the launcher.

B) Mark's potato spends more time in the air than Marvin's potato before hitting the ground.

C) Marvin's potato hits the ground with a greater speed than Mark's potato

Explanation:

A) For projectile motion, the final horizontal distance of the projectile from where it was initially launched (its range) is given as

R = (u² sin 2θ)/g

where

u = initial velocity of the projectile

θ = angle above the horizontal at which the projectile was launched = 30°, 60°

g = acceleration due to gravity on Mars

Since, u and g are the same for Mark and Marvin, sin 2θ would determine which range is higher.

Sin (2×60°) = sin 120°

Sin (2×30°) = sin 60°

Sin 120° = Sin 60°

Hence, the two potatoes cover the same horizontal distance from the launcher.

B) Time spent in the air for a projectile is given as

T = (2u sin θ)/g

Again, since u and g are the same for Mark and Marvin on Mars, sin θ will give the required idea of whose potato spends more time in the air.

Sin 60° = 0.866

Sin 30° = 0.50

Sin 60° > Sin 30°

Hence, Mark's potato spends more time in the air than Marvin's potato.

C) The horizontal velocity for projectile motion is constant all through the motion and is equal to u cos θ

u cos 60° < u cos 30°

And the initial vertical velocity is u sin θ

Final vertical velocity

= (initial vertical velocity) - gt

g = acceleration due to gravity on Mars

T = time of flight

For Mark,

initial vertical velocity = u sin 60°, greater than Marvin's u sin 30°

And Mark's potato's time of flight is greater as established in (B) above.

But for Marvin

initial vertical velocity = u sin 30°, less than Mark's u sin 60°

And Marvin's potato's time of flight is lesser as established in (B) above

So, at the end of the day, the final vertical velocity is almost the same for both Mark's and Marvin's potatoes.

Hence, the horizontal component of the final velocity edges the final speed of the potatoes just before hitting the ground in Marvin's favour.

Hope this Helps!!!

The lowest-pitch tone to resonate in a pipe of length L that is closed at one end and open at the other end is 200 Hz. Which one of the following frequencies will NOT resonate in the same pipe

a. 1800 Hz
b. 1000 Hz
c. 1400 Hz
d. 600 Hz
e. 400 Hz

Answers

Answer:

e. 400 Hz

Explanation:

In closed organ pipe,  only odd harmonics of fundamental note is possible .

The fundamental frequency is 200 Hz . Then other overtones will be having following frequencies .

200 x 3 , 200 x 5 , 200 x 7 , 200 x 9 etc

600 Hz , 1000 Hz , 1400 Hz  , 1800 Hz .

Frequency not possible is 400 Hz .

Organ pipe A, with both ends open, has a fundamental frequency of 475 Hz. The third harmonic of organ pipe B, with one end open, has the same frequency as the second harmonic of pipe A. Use 343 m/s for the speed of sound in air. How long are (a) pipe A and (b) pipe B?

Answers

Answer:

The length of organ pipe A is [tex]L = 0.3611 \ m[/tex]

The length of organ pipe B is  [tex]L_b = 0.2708 \ m[/tex]

Explanation:

From the question we are told that

    The fundamental frequency is  [tex]f = 475 Hz[/tex]

     The speed of sound is  [tex]v_s = 343 \ m/s[/tex]

The fundamental frequency of the organ pipe A  is mathematically represented as

        [tex]f= \frac{v_s}{2 L}[/tex]

Where L is the length of  organ pipe

   Now  making L the subject

        [tex]L = \frac{v_s}{2f}[/tex]

substituting values

        [tex]L = \frac{343}{2 *475}[/tex]

        [tex]L = 0.3611 \ m[/tex]

The second harmonic frequency of the  organ pipe A is mathematically represented as

       [tex]f_2 = \frac{v_2}{L}[/tex]

The third harmonic frequency of the  organ pipe B is mathematically represented as      

      [tex]f_3 = \frac{3 v_s}{4 L_b }[/tex]

So from the question

       [tex]f_2 = f_3[/tex]

So

    [tex]\frac{v_2}{L} = \frac{3 v_s}{4 L_b }[/tex]

Making  [tex]L_b[/tex] the subject

     [tex]L_b = \frac{3}{4} L[/tex]

substituting values

    [tex]L_b = \frac{3}{4} (0.3611)[/tex]

    [tex]L_b = 0.2708 \ m[/tex]

Block 1, of mass m1 = 2.50 kg , moves along a frictionless air track with speed v1 = 27.0 m/s. It collides with block 2, of mass m2 = 33.0 kg , which was initially at rest. The blocks stick together after the collision.A. Find the magnitude pi of the total initial momentum of the two-block system. Express your answer numerically.B. Find vf, the magnitude of the final velocity of the two-block system. Express your answer numerically.C. what is the change deltaK= Kfinal- K initial in the two block systems kinetic energy due to the collision ? Express your answer numerically in joules.

Answers

Answer:

a

The total initial momentum of the two-block system is  [tex]p_t = 67.5 \ kg \cdot m/s^2[/tex]

b

The magnitude of the final velocity of the two-block system [tex]v_f = 1.9014 \ m/s[/tex]

c

 the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision is  

    [tex]\Delta KE =- 847.08 \ J[/tex]

Explanation:

From the question we are told that

    The mass of first  block  is [tex]m_1 = 2.50 \ kg[/tex]

      The initial velocity of first   block is [tex]u_1 = 27.0 \ m/s[/tex]

          The mass of second block is  [tex]m_2 = 33.0\ kg[/tex]

          initial velocity of second block is  [tex]u_2 = 0 \ m/s[/tex]

         

The magnitude of the of the total initial momentum of the two-block system is mathematically repented as

        [tex]p_i = (m_1 * u_1 ) + (m_2 * u_2)[/tex]

substituting values

        [tex]p_i = (2.50* 27 ) + (33 * 0)[/tex]

        [tex]p_t = 67.5 \ kg \cdot m/s^2[/tex]

According to the law of linear momentum conservation

        [tex]p_i = p_f[/tex]

Where  [tex]p_f[/tex] is the total final momentum of the system which is mathematically represented as

       [tex]p_f = (m_+m_2) * v_f[/tex]

Where [tex]v_f[/tex] is the final velocity of the system

      [tex]p_i = (m_1 +m_2 ) v_f[/tex]

substituting values

       [tex]67.5 = (2.50+33 ) v_f[/tex]

        [tex]v_f = 1.9014 \ m/s[/tex]

The change in kinetic energy is mathematically represented as

     [tex]\Delta KE = KE_f -KE_i[/tex]

Where [tex]KE_f[/tex] is the final kinetic energy of the two-body system  which is mathematically represented as

        [tex]KE_f = \frac{1}{2} (m_1 +m_2) * v_f^2[/tex]

substituting values

        [tex]KE_f = \frac{1}{2} (2.50 +33) * (1.9014)^2[/tex]

        [tex]KE_f =64.17 J[/tex]

While [tex]KE_i[/tex] is the initial kinetic energy of the two-body system

     [tex]KE_i = \frac{1}{2} * m_1 * u_1^2[/tex]

substituting values

       [tex]KE_i = \frac{1}{2} * 2.5 * 27^2[/tex]

        [tex]KE_i = 911.25 \ J[/tex]

So

    [tex]\Delta KE = 64.17 -911.25[/tex]

  [tex]\Delta KE =- 847.08 \ J[/tex]

510 g squirrel with a surface area of 935 cm2 falls from a 4.8-m tree to the ground. Estimate its terminal velocity. (Use the drag coefficient for a horizontal skydiver. Assume that the squirrel can be approximated as a rectanglar prism with cross-sectional area of width 11.6 cm and length 23.2 cm. Note, the squirrel may not reach terminal velocity by the time it hits the gr

Answers

Answer:

The terminal velocity is [tex]v_t =17.5 \ m/s[/tex]

Explanation:

From the question we are told that

       The mass of the squirrel is  [tex]m_s = 50\ g = \frac{50}{1000} = 0.05 \ kg[/tex]

      The surface area is   [tex]A_s = 935 cm^2 = \frac{935}{10000} = 0.0935 \ m^2[/tex]

       The height of fall is  h =4.8 m

        The length of the prism is [tex]l = 23.2 = 0.232 \ m[/tex]

          The width of the prism is [tex]w = 11.6 = 0.116 \ m[/tex]

 

The terminal velocity is mathematically represented as

       [tex]v_t = \sqrt{\frac{2 * m_s * g }{\dho_s * C * A } }[/tex]

Where [tex]\rho[/tex]  is the density of a rectangular prism with a constant values of [tex]\rho = 1.21 \ kg/m^3[/tex]

            [tex]C[/tex] is the drag coefficient for a horizontal skydiver with a value = 1

            A  is the area of the prism the squirrel is assumed to be which is mathematically represented as

      [tex]A = 0.116 * 0.232[/tex]

       [tex]A = 0.026912 \ m^2[/tex]

 substituting values

      [tex]v_t = \sqrt{\frac{2 * 0.510 * 9.8 }{1.21 * 1 * 0.026912 } }[/tex]

     [tex]v_t =17.5 \ m/s[/tex]

       

An unstrained horizontal spring has a length of 0.36 m and a spring constant of 320 N/m. Two small charged objects are attached to this spring, one at each end. The charges on the objects have equal magnitudes. Because of these charges, the spring stretches by 0.033 m relative to its unstrained length. Determine (a) the possible algebraic signs and (b) the magnitude of the charges.

Answers

Answer:

1.been both -ve charged or both +be charged particles

2. 3.52mC

Explanation:

For the charge particle to cause an extension or movement of the string from its unrestrained position they would have been both -ve charged or both +be charged particles that's because like charges repel.

Now the Force sustain by the extended string is

F = Ke;

Where K is the force constant of the string, 320 N/m

e is the extension,0.033 m

F = 320 × 0.033 =10.56N

2.But according to columns law of charge;

F = kQ1 Q2

But Q1=Q2{ since the charge are of the same magnitude}.

Hence F = KQ^2

Where K is columns constant =9×10^9F/m

Hence Q=√F/K

Q= √10.56/9×10^9

=3.52×10^-3C

= 3.52mC

A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.80 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.0 m. Calculate the magnitude of the total angular momentum of the woman–disk system. (Assume that you can treat the woman as a point.)

Answers

Answer:

The angular momentum is  [tex]L = 8440.32 \ kg \cdot m^2 \cdot s^{-1}[/tex]

Explanation:

From the question we are told that

    The mass of the woman is  [tex]m = 50 \ kg[/tex]

     The angular  speed of the rim is  [tex]w = 0.80 \ rev/s = 0.8 * [\frac{2 \pi}{1} ] = 5.024 \ rad \cdot s^{-1}[/tex]

      The mass of the disk is  [tex]m_d = 110 \ kg[/tex]

       The radius of the disk is [tex]r_d = 4.0 \ m[/tex]

The moment of inertia of the disk is mathematically represented as

        [tex]I_D = \frac{1}{2} m_d r^2_d[/tex]

substituting values

          [tex]I_D = \frac{1}{2} * 110 * 4^2[/tex]

          [tex]I_D = 880 \ kg \cdot m^2[/tex]

The moment of inertia of the woman is  

          [tex]I_w = m * r_d^2[/tex]

substituting values

        [tex]I_w = 50 * 4^2[/tex]

       [tex]I_w =800\ kg[/tex]

The moment of inertia of the system (the woman + the large disk ) is  

        [tex]I_t = I_w + I_D[/tex]

substituting values  

      [tex]I_t = 880 +800[/tex]

     [tex]I_t =1680 \ kg \cdot m^2[/tex]

The angular momentum of the system is

      [tex]L = I_t w[/tex]

substituting values  

      [tex]L = 1680 * 5.024[/tex]

      [tex]L = 8440.32 \ kg \cdot m^2 \cdot s^{-1}[/tex]

In each pair, select the body with more internal energy.

Answers

Answer:

rt

Explanation:

Richard is driving home to visit his parents. 150 mi of the trip are on the interstate highway where the speed limit is 65 mph . Normally Richard drives at the speed limit, but today he is running late and decides to take his chances by driving at 80 mph. How many minutes does he save?

Answers

Answer:

t = 25.5 min

Explanation:

To know how many minutes does Richard save, you first calculate the time that Richard takes with both velocities v1 = 65mph and v2 = 80mph.

[tex]t_1=\frac{x}{v_1}=\frac{150mi}{65mph}=2.30h\\\\t_2=\frac{x}{v_2}=\frac{150mi}{80mph}=1.875h[/tex]

Next, you calculate the difference between both times t1 and t2:

[tex]\Delta t=t_1-t_2=2.30h-1.875h=0.425h[/tex]

This is the time that Richard saves when he drives with a speed of 80mph. Finally, you convert the result to minutes:

[tex]0.425h*\frac{60min}{1h}=25.5min=25\ min\ \ 30 s[/tex]

hence, Richard saves 25.5 min (25 min and 30 s) when he drives with a speed of 80mph

HOW CAN I SOLVE THIS QUESTION? PLEASE HELP The movement of a locomotive piston in the cylinder is limited to 0.76 m. Assume that the piston makes a simple harmonic movement that makes 180 revolutions per minute, and find its maximum speed.

Answers

Answer:

7.2 m/s

Explanation:

The maximum speed is the amplitude times the frequency.

v = Aω

v = (0.76 m / 2) (180 rev × 2π rad/rev / 60 s)

v = 7.2 m/s

A tank circuit consists of an inductor and a capacitor. Give a simple explanation for why the magnetic field in the induc- tor is strongest at the moment that the separated charge in the capacitor reaches zero.

Answers

Answer:

If you pull a permanent magnet rapidly away from a tank circuit, what is likely to happen in that circuit?

Charge will oscillate in the tank's capacitor and inductor.

Explanation:

A particle with a charge of 5.1 μC is 3.02 cm from a particle with a charge of 2.51 μC . The potential energy of this two-particle system, relative to the potential energy at infinite separation, is

Answers

Answer:

U = 3.806 J

Explanation:

The potential energy between the two charges q1 and q2, is given by the following formula:

[tex]U=k\frac{q_1q_2}{r}[/tex]         (1)

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

q1 = 5.1*10^-6 C

q2 = 2.51*10^-6 C

r: distance of separation between particles = 3.02cm = 3.02*10^-2 m

You replace the values of all parameters in the equation (1):

[tex]U=(8.98*10^9Nm^2/C^2)\frac{(5.1*10^{-6}C)(2.51*10^{-6}C)}{3.02*10^{-2}m}\\\\U=3.806J[/tex]

The potential energy of the two particle system is 3.806 J

An 80-kg quarterback jumps straight up in the air right before throwing a 0.43-kg football horizontally at 15 m/s . How fast will he be moving backward just after releasing the ball?

Sort the following quantities as known or unknown. Take the horizontal direction to be along the x axis.

mQ: the mass of the quarterback
mB: the mass of the football
(vQx)i: the horizontal velocity of quarterback before throwing the ball
(vBx)i: the horizontal velocity of football before being thrown
(vQx)f: the horizontal velocity of quarterback after throwing the ball
(vBx)f: the horizontal velocity of football after being thrown

Answers

Answer:

vBxf = 0.08625m/s

Explanation:

This is a problem about the momentum conservation law. The total momentum before equals the total momentum after.

[tex]p_f=p_i[/tex]

pf: final momentum

pi: initial momentum

The analysis of the momentum conservation is about a horizontal momentum (x axis). When the quarterback jumps straight up, his horizontal momentum is zero. Then, after the quarterback throw the ball the sum of the momentum of both quarterback and ball must be zero.

Then, you have:

[tex]m_Qv_{Qxi}+m_{Bxi}v_{Bxi}=m_Qv_{Qxf}+m_{Bxf}v_{Bxf}[/tex]    (1)

mQ: the mass of the quarterback = 80kg

mB: the mass of the football = 0.43kg

(vQx)i: the horizontal velocity of quarterback before throwing the ball = 0m/s

(vBx)i: the horizontal velocity of football before being thrown = 0m/s

(vQx)f: the horizontal velocity of quarterback after throwing the ball = ?

(vBx)f: the horizontal velocity of football after being thrown = 15 m/s

You replace the values of the variables in the equation (1), and you solve for (vBx)f:

[tex]0\ kgm/s=-(80kg)(v_{Bxf})+(0.46kg)(15m/s)\\\\v_{Bxf}=\frac{(0.46kg)(15m/s)}{80kg}=0.08625\frac{m}{s}[/tex]

Where you have taken the speed of the quarterback as negative because is in the negative direction of the x axis.

Hence, the speed of the quarterback after he throws the ball is 0.08625m/s

Davina accelerates a box across a smooth frictionless horizontal surface over a displacement of 18.0 m with a constant 25.0 N force angled at 23.0° below the horizontal. How much work does she do on the box? A. 176 J B. 414 J C. 450 J D. 511 J Group of answer choices

Answers

Answer:

W = 414 J, correct is B

Explanation:

Work is defined by

        W = ∫ F .dx

where F is the force, x is the displacement and the point represents the dot product

this expression can also be written with the explicit scalar product

        W = ∫ F dx cos θ

where is the angle between force and displacement

for this case as the force is constant

         W = F x cos θ

calculate

         W = 25.0 18.0 cos (-23)

         W = 414 J

the correct answer is B

a ballistic pendulum is used to measure the speed of high-speed projectiles. A 6 g bullet A is fired into a 1 kg wood block B suspended by a cord of length l =2.2m. The block then swings through a maximum angle of theta = 60. Determine (a) the initial speed of the bullet vo, (b) the impulse imparted by the bullet on the block, (c) the force on the cord immediately after the impact

Answers

Answer:

(a) v-bullet = 399.04 m/s

(b) I = 2.38 kg m/s

(c) T = 2.59 N

Explanation:

(a) To calculate the initial speed of the bullet, you first take into account that the kinetic energy of both wood block and bullet, just after the bullet impacts the block, is equal to the potential gravitational energy of block and bullet when the cord is at 60° respect to the vertical.

The potential energy is given by:

[tex]U=(M+m)gh[/tex]       (1)

U: potential energy

M: mass of the wood block = 1 kg

m: mass of the bullet = 6g = 6.0*10^-3 kg

g: gravitational constant = 9.8m/s^2

h: distance to the ground

The distance to the ground is calculate d by using the information about the length of the cord and the degrees of the cord respect to the vertical:

[tex]h=l-lsin\theta\\\\h=2.2m-2,2m\ sin60\°=0.29m[/tex]

The potential energy is:

[tex]U=(1kg+6*10^{-3}kg)(9.8m/s^2)(0.29m)=2.85J[/tex]

Next, the potential energy is equal to kinetic energy of the block and the bullet at the beginning of its motion:

[tex]U=\frac{1}{2}(M+m)v^2\\\\v=\sqrt{2\frac{U}{M+m}}=\sqrt{2\frac{2.85J}{1kg+6*10^{-3}kg}}=2.38\frac{m}{s}[/tex]

Next, you use the momentum conservation law, in order to calculate the speed of the bullet before the impact:

[tex]Mv_1+mv_2=(M+m)v[/tex]    (2)

v1: initial velocity of the wood block = 0m/s

v2: initial speed of the bullet

v: speed of bullet and block = 2.38m/s

You solve the equation (2) for v2:

[tex]M(0)+mv_2=(M+m)v[/tex]    

[tex]v_2=\frac{M+m}{m}v=\frac{1kg+6*10^{-3}kg}{6*10^{-3}kg}(2.38m/s)\\\\v_2=399.04\frac{m}{s}[/tex]

The speed of the bullet before the impact with the wood block is 399.04 m/s

(b) The impulse is gibe by the change in the velocity of the block, multiplied by the mass of the block:

[tex]I=M\Delta v=M(v-v_1)=(1kg)(2.38m/s-0m/s)=2.38kg\frac{m}{s}[/tex]

The impulse is 2.38 kgm/s

(c) The force on the cord after the impact is equal to the centripetal force over the block and bullet. That is:

[tex]T=F_c=(M+m)\frac{v^2}{l}=(1.006kg)\frac{(2.38m/s)^2}{2.2m}=2.59N[/tex]    

The force on the cord after the impact is 2.59N

Answer:

The initial speed of the bullet [tex]V_o = 777.97m/s[/tex]The force on the cord immediately after the impact = [tex]19.71N[/tex]

Explanation:

Apply the law of conversion of energy

[tex]V_f = \sqrt{2gh}[/tex]

where,

h = height of which the bullet and block rise after impact

[tex]h = L - Lcos\theta\\\\h = 2.2 - (2.2*cos60)\\\\h = 1.1m[/tex]

Therefore,

[tex]V_f = \sqrt{2gh}\\\\V_f = \sqrt{2*9.8*1.1}\\\\V_f = 4.64m/s[/tex]

From conservation of momentum principle, [tex]m_Bv_B = 0[/tex]

[tex]m_ov_o + m_Bv_B = (m_b+m_B)V_f\\\\0.006V_o = (0.006+1)*4.64\\\\V_o = 777.97m/s[/tex]

C) The force in the cable is due to the centrfugal force of the system, which is due to the motion of the system is a curved path and weight of the system

[tex]F = \frac{m_b+m_B}{L}V_f^2 + (m_b+m_B)g\\\\F = \frac{0.006+1}{2.2}*4.64^2 + (0.006+1)9.81\\\\F = 19.71N[/tex]

For more information on this visit

https://brainly.com/question/17756498

How much work must be done on a 10 kg snowboard to increase its speed from 4 m/s to 6 m/s?

Answers

Answer:

100 J

Explanation:

Work = change in energy

W = ΔKE

W = ½ mv² − ½ mv₀²

W = ½ m (v² − v₀²)

W = ½ (10 kg) ((6 m/s)² − (4 m/s)²)

W = 100 J

A solid wood door 1.00 m wide and 2.00 m high is hinged along one side and has a total mass of 45.0kg . Initially open and at rest, the door is struck at its center by a handful of sticky mud with mass 0.700 kg, traveling perpendicular to the door at 12.0m/s just before impact
A) Find the final angular speed of the door.
answer in rad/s
B) Does the mud make a significant contribution to the moment of inertia?
Yes or No

Answers

Answer:

0.19rad/s and Yes

Explanation:

From the principle of conservation of momentum it means momentum before and after collision is the same.

Momentum before collision is 0.700 kg×12 = 8.4Ns

Momentum of the door = mass of door × velocity of door

8.4Ns = mass of door × velocity of door

Velocity of door = 8.4Ns/45 =0.19m/s

But velocity V= w×r ;

w-angular velocity

r- raduis = width

w= 0.19/1m = 0.19rad/s

2. Yes it did because it resisted The moment of inertia and ensued the locking of the door.

An object will sink in a liquid if the density of the object is greater than that of the liquid. The mass of a sphere is 0.723 g. If the volume of this sphere is less than ________ cm3, then the sphere will sink in liquid mercury (density

Answers

Answer:

= 0.0532 cm^3

Explanation:

The computation of volume of the sphere is shown below:-

[tex]Density = \frac{Mass}{Volume}[/tex]

Where,

Density = 13.6 g/cm^3

Mass of sphere = 0.723 g

now we will put the values into the above formula to reach volume of the sphere which is here below:-

[tex]Volume = \frac{0.723}{13.6}[/tex]

= 0.0532 cm^3

Therefore for computing the volume of the sphere we simply applied the above formula.

A standing wave on a string that is fixed at both ends has frequency 80.0 Hz. The distance between adjacent antinodes of the standing wave is 12.0 cm. What is the speed of the waves on the string, in m/s

Answers

Answer:

v = 19.2 m/s

Explanation:

In order to find the speed of the string you use the following formula:

[tex]f=\frac{v}{2L}[/tex]          (1)

f: frequency of the string = 80.0Hz

v: speed of the wave = ?

L: length of the string = 12.0cm = 0.12m

The length of the string coincides with the wavelength of the wave for the fundamental mode.

Then, you solve for v in the equation (1), and replace the values of the other parameters:

[tex]v=2Lf=2(0.12m)(80.0Hz)=19.2\frac{m}{s}[/tex]

The speed of the wave is 19.2 m/s

A roller coaster car is going over the top of a 15-m-radius circular rise. The passenger in the roller coaster has a true weight of 600 N (therefore a mass of 61.2 kg). At the top of the hill, the passengers "feel light," with an apparent weight of only 360 N. How fast is the coaster moving

Answers

Answer:

v = 7.67 m/s

Explanation:

The equation for apparent weight in the situation of weightlessness is given as:

Apparent Weight = m(g - a)

where,

Apparent Weight = 360 N

m = mass passenger = 61.2 kg

a = acceleration of roller coaster

g = acceleration due to gravity = 9.8 m/s²

Therefore,

360 N = (61.2 kg)(9.8 m/s² - a)

9.8 m/s² - a = 360 N/61.2 kg

a = 9.8 m/s² - 5.88 m/s²

a = 3.92 m/s²

Since, this acceleration is due to the change in direction of velocity on a circular path. Therefore, it can b represented by centripetal acceleration and its formula is given as:

a = v²/r

where,

a = centripetal acceleration = 3.92 m/s²

v = speed of roller coaster = ?

r = radius of circular rise = 15 m

Therefore,

3.92 m/s² = v²/15 m

v² = (3.92 m.s²)(15 m)

v = √(58.8 m²/s²)

v = 7.67 m/s

A type of friction that occurs when air pushes against a moving object causing it to negatively accelerate
a) surface area
b) air resistance
c) descent velocity
d) gravity

Answers

Answer:

Air resistance

Answer B is correct

Explanation:

The friction that occurs when air pushes against a moving object causing it to negatively accelerate is called as air resistance.

hope this helps

brainliest appreciated

good luck! have a nice day!

A car travels around an oval racetrack at constant speed. The car is accelerating:________.
A) at all points except B and D.
B) at all points except A, B, C, and D.
C) everywhere, including points A, B, C, and D.
D) nowhere, because it is traveling at constant speed.
2) A moving object on which no forces are acting will continue to move with constant:_________
A) Acceleration
B) speed
C) both of theseD) none of these

Answers

Answer:

1A,2D,3B

Explanation:

hope this helps

How many ohms of resistance are in a 120–volt hair dryer that draws 7.6 amps of current?

Answers

From Ohm's law . . . Resistance = (voltage) / (current)

Resistance = (120 volts) / (7.6 Amperes)

Resistance = 15.8 Ω

Unit conversion

The choices are in units
A,GA,MA,uA,kA,mA,nA,pA. Pick one the units

Answers

Answer:

  1.234567 kA

Explanation:

The prefix k stands for kilo-, or 10³. The prefix m stands for milli-, or 10⁻³. The sum shown is ...

  1.234 kA + 0.000567 kA = 1.234567 kA

A mass m at the end of a spring vibrates with a frequency of 0.72 Hz . When an additional 700 g mass is added to m, the frequency is 0.64 Hz . Part A What is the value of m? Express your answer using two significant figures.

Answers

Answer:

The value of m is 2635.294 grams.

Explanation:

Let suppose that mass-spring system has a simple harmonic motion, to this respect the formula for frequency is:

[tex]f = \frac{\omega}{2\pi}[/tex]

Where [tex]\omega[/tex] is the angular frequency, measured in radians per second.

For a mass-spring system under simple harmonic motion, the angular frequency is:

[tex]\omega = \sqrt{\frac{k}{m} }[/tex]

Where:

[tex]k[/tex] - Spring constant, measured in newtons per meter.

[tex]m[/tex] - Mass, measured in kilograms.

The following equation is obtained after replacing angular frequency in frequency formula:

[tex]f = \frac{1}{2\pi}\cdot \sqrt{\frac{k}{m} }[/tex]

As this shows, frequency is inversely proportional to the square root of mass. Hence, the following relationship is deducted:

[tex]f_{1}\cdot \sqrt{m_{1}} = f_{2} \cdot \sqrt{m_{2}}[/tex]

If [tex]m_{2} = m_{1} + 700\,g[/tex], [tex]f_{1} = 0.72\,hz[/tex] and [tex]f_{2} = 0.64\,hz[/tex], the resulting expression is simplified and then initial mass is found after clearing it:

[tex]f_{1} \cdot \sqrt{m_{1}} = f_{2} \cdot \sqrt{m_{1}+700\,g}[/tex]

[tex]f_{1}^{2} \cdot m_{1} = f_{2}^{2}\cdot (m_{1} + 700\,g)[/tex]

[tex]\left(\frac{f_{1}}{f_{2}} \right)^{2}\cdot m_{1} = m_{1} + 700\,g[/tex]

[tex]\left[\left(\frac{f_{1}}{f_{2}}\right)^{2} - 1\right]\cdot m_{1} = 700\,g[/tex]

[tex]m_{1} = \frac{700\,g}{\left(\frac{f_{1}}{f_{2}} \right)^{2}-1}[/tex]

[tex]m_{1} = \frac{700\,g}{\left(\frac{0.72\,hz}{0.64\,hz} \right)^{2}-1}[/tex]

[tex]m_{1} = 2635.294\,g[/tex]

The value of m is 2635.294 grams.

Compare the energy consumption of two commonly used items in the household. Calculate the energy used by a 1.40 kW toaster oven, Wtoaster , which is used for 5.40 minutes , and then calculate the amount of energy that an 11.0 W compact fluorescent light (CFL) bulb, Wlight , uses when left on for 10.50 hours .

Answers

Energy = (power) x (time)

-- For the toaster:

Power = 1.4 kW  =  1,400 watts

Time = 5.4 minutes = 324 seconds

Energy = (1,400 W) x (324 s)  =  453,600 Joules

-- For the CFL bulb:

Power = 11 watts

Time = 10.5 hours = 37,800 seconds

Energy = (11 W) x (37,800 s)  =  415,800 Joules

-- The toaster uses energy at 127 times the rate of the CFL bulb.

-- The CFL bulb uses energy at 0.0079 times the rate of the toaster.

-- The toaster is used for 0.0086 times as long as the CFL bulb.

-- The CFL bulb is used for 116.7 times as long as the toaster.    

-- The toaster uses 9.1% more energy than the CFL bulb.

-- The CFL bulb uses 8.3% less energy than the toaster.  

EASY! WILL GIVE BRAINLIEST!

Find the conductivity of a conduit with a cross-sectional area of 0.50 cm2 and a length of 15 cm if its conductance G is 0.050 ohm-1.

σ = _____ ohm-1cm-l

3
75
1.5
0.0017

Answers

the answer is 1.5 hope this helps

Answer:

1.5

Explanation:

0.5=σ/(15/0.5)

σ=3/2 or 1.5

When an airplane is flying 200 mph at 5000-ft altitude in a standard atmosphere, the air velocity at a certain point on the wing is 273 mph relative to the airplane. (a) What suction pressure is developed on the wing at that point? (b) What is the pressure at the leading edge (a stagnation point) of the wing?

Answers

Answer:

P1 = 0 gage

P2 = 87.9 lb/ft³

Explanation:

Given data

Airplane flying = 200 mph = 293.33 ft/s

altitude height = 5000-ft

air velocity relative to the airplane = 273 mph = 400.4 ft/s

Solution

we know density at height 5000-ft is 2.04 × [tex]10^{-3}[/tex] slug/ft³

so here P1 + [tex]\frac{\rho v1^2}{2}[/tex]  = P2 + [tex]\frac{\rho v2^2}{2}[/tex]

and here

P1 = 0 gage

because P1 = atmospheric pressure

and so here put here value and we get

P1 + [tex]\frac{\rho v1^2}{2}[/tex]  = P2 + [tex]\frac{\rho v2^2}{2}[/tex]

0 + [tex]\frac{2.048 \times 10^{-3} \times 293.33^2}{2}[/tex]  [tex]= P2 + \frac{2.048 \times 10^{-3} \times 400.4^2}{2}[/tex]  

solve it we get

P2 = 87.9 lb/ft³

An automobile moving along a straight track changes its velocity from 40 m/s to 80 m/s in a distance of 200 m. What is the (constant) acceleration of the vehicle during this time? Group of answer choices

Answers

Answer:

Dear Kaleb

Answer to your query is provided below

Acceleration of the vehicle is 12m/s^2

Explanation:

Explanation for the same is attached in image

Other Questions
Which of the following statements is correct?a. The cost of new equity (re) could possibly be lower than the cost of retained earnings (rs) if the market risk premium, risk-free rate, and the company's beta all decline by a sufficiently large amount.b. The component cost of preferred stock is expressed as rp(1 - T), because preferred stock dividends are treated as fixed charges, similar to the treatment of interest on debt.c. Its cost of retained earnings is the rate of return shareholders require on a firm's common stock.d. We should use historical measures of the component costs from prior financing when estimating a company's WACC for capital budgeting purposes. How can I make the red segment less steep than the blue segment , and more steep than the green segment ? Choose the sentence that accurately expresses a hurt arm. Me duele el dedo. Me duele la espalda. Me duele la nariz. Me duele el brazo. Indicate in standard form equation of the line passing through the given A test is normally distributed with a mean of 70 and a standard deviation of 10. Todd scores a 55 on the test. Select the answer from the drop-down menu to correctly complete the statement. Based on the mean of 70 and his raw score of 55, Todds z-score must be What is the main idea? what is the definition of an opposite ray Compare and contrast the characters of Antonio and Shylock in Shakespeares The Merchant of Venice. Sandra, a sixth-grader, is trying to complete a three-dimensional puzzle. She tests pieces for fit as she gradually moves toward her goal of completing the puzzle. Every so often she consults a picture of the completed puzzle. Her teacher, a devotee of the information processing school, recognizes that Sandra is engaged in Use the Zero Product Property to solve each equation.2x2 - 5x + 2 = 0 65g of nitric acid are produced in a reaction. 2.5g of platinum are added to the reaction vessel at the start of the reaction to act as a catalyst. How much platinum will there be left in the vessel at the end of the reaction? A researcher classifies firefighters according to whether their gloves fit well or poorly and by gender. They want to know if there is a difference in the proportion of poorly fitted gloves and gender. At alpha = 0.01, use the chi-square test to determine if there is a difference in the population proportion of glove fitness for the two genders. Observed data Males Females TotalGloves fit poorly 132 20 152Gloves fit well 415 19 434Total 547 39 586Expected data Males Females TotalGloves fit poorlyGloves fit wellTotal 2 PointsWhat was a major difference between social reformers and socialists in the18th and 19th centuries?O A. Socialists were more interested in drastic political and socialreorganizationO B. Social reformers were more interested in urging people to leaveurban centersC. Socialists were more influenced by wealthy and middle classcitizens' valuesD. Social reformers were more willing to engage in violence toachieve their goals. Assuming 100% efficient energy conversion, how much water stored behind a 50 centimetre high hydroelectric dam would be required to charge battery On the grant date, January 1st, 2015, the stock was quoted on the stock exchange at $63 per share. The fair value of the options on the grant date was estimated at $15 per option. The amounts of compensation expense ABC should recognize with respect to the options during 2015, 2016, and 2017 are: Which equation is part of solving the system by substitution? 4(y + 11)2 3y2 = 8 4(11 y)2 3y2 = 8 4(y 11)2 3y2 = 8 4(11y)2 3y2 = 8 Which are responsibilities of public health agenciessuch as the Centers for Disease Control andPrevention? Check all that apply. 6. One 15 A general-purpose circuit should be installed per how many square feet of floor space?O A. 750OB. 400O C. 600O D. 500 plzzz help meeeeeeeee ifaled plzzzzzzzzzzzzzzz make x the subject of the formula 6x+a=5(x+t)