A note on a piano vibrates 262 times per second . What is the period of the wave ?

Answers

Answer 1
it gets 5 beats per minute.

Related Questions

An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed

Answers

Complete Question

An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?

A It should stay the same

B  It should be quadrupled.

C It should be quintupled

D It should be doubled.

E It should be tripled

Answer:

Option D is the correct option

Explanation:

Generally electric field is mathematically represented as

        [tex]E = \frac{\sigma}{\epsilon_o}[/tex]

Where [tex]\sigma[/tex] is the charge per unit area (Charge density )

From the question we are told that [tex]\sigma[/tex] is doubled hence the

     [tex]E = \frac{2 \sigma }{\epsilon_o}[/tex]    

Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density

28 points!! please help

Answers

7(a) transpiration is faster in warmer dry air
(b)(I)xylem
(ii) 1. They are stacked end-to-end
2. Consists of dead cells

Someone plzzz helpppppp with this last question

Answers

Answer:

I dont know someone deleted answers. But they were wrong. INERTIA IS CORRECT I DID THIS IN MY SCHOOL

C IS CORRECT

During last year’s diving competition, the divers always pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully extend their limbs to enter straight down as shown. Explain the effect of both actions on their angular velocities and kinetic energy (support your answer with working). Also explain the effect on their angular momentum.

Answers

Answer:

the angular speed of the person increases, being able to make more turns and faster.

 K₂ = K₁ I₁ / I₂

Explanation:

When the divers are turning the system is isolated, so all the forces are internal and therefore also the torque, therefore the angular momentum is conserved

initial, joint when starting to turn

         L₀ = I₁ w₁

final. When you shrink your arms and legs

         Lf = I₂ w₂

         L₀ = Lf

         I₁ w₁ = I₂ w₂

when you shrink your arms and legs the distance to the turning point decreases and since the moment of inertia depends on the distance squared, the moment of inertia also decreases

      I₂ <I₁

         w₂ = I₁ / I₂ w₁

therefore the angular speed of the person increases, being able to make more turns and faster.

When it goes into the water it straightens the arm and leg, so the moment of inertia increases

          I₁> I₂

           w₁ = I₂ / I₁ w₂

therefore we see that the angular velocity decreases, therefore the person trains the water like a stone and can go deeper faster.

In both cases the kinetic energy is

          K = ½ I w²

the initial kinetic energy is

          K₁ = ½ I₁ w₁²

the final kinetic energy is

          K₂ = ½ I₂ w₂²

we substitute

          K₂ = ½ I₂ (I₁ / I₂ w1² 2

          K₂ = ½ I₁² / I₂ w₁² = (½ I₁ w₁²)  I₁ / I₂  

          K₂ = K₁ I₁ / I₂

therefore we see that the kinetic energy increases by factor I₁/I₂

PLEASE HELP !
Complete the following sentence. Choose the right answer from the given ones. The internal energy of the body can be changed A / B / C. A. only when the body is warmed or cooled B. when work is done on the body or heat flow C. only when the body does work

Answers

B

HOPE IT HELPS LET ME KNOW IF U NEED EXPLANATION

A uniform disk with a 25 cm radius swings without friction about a nail through the rim. If it is released from rest from a position with the center level with the nail, then what is its angular velocity as it swings through the point where the center is below the na

Answers

Answer:

Explanation:

During the swing , the center of mass will go down due to which disc will lose potential energy which will be converted into rotational kinetic energy

mgh = 1/2 I ω² where m is mass of the disc , h is height by which c.m goes down which will be equal to radius of disc , I is moment of inertia of disc about the nail at rim , ω is angular velocity .

mgr  = 1/2 x ( 1/2 m r²+ mr²) x ω²

gr  = 1/2 x 1/2  r² x ω² + 1/2r² x ω²

g = 1 / 4 x ω² r + 1 / 2 x ω² r

g = 3  x ω² r/ 4

ω² = 4g /3 r

= 4 x 9.8 /  3 x  .25

= 52.26

ω = 7.23  rad / s .

A rocket rises vertically, from rest, with an acceleration of 5.0 m/s2 until it runs out of fuel at an altitude of 960 m . After this point, its acceleration is that of gravity, downward.
(A) What is the velocity of the rocket when it runs out of fuel?
(B) How long does it take to reach this point?
(C) What maximum altitude does the rocket reach?
(D) How much time (total) does it take to reach maximum altitude?
(E) With what velocity does it strike the Earth? () How long (total) is it in the air?
a) 70.427m/s
b) 22 m
c) 1027.8m
d) 29.179 s
e) 142m/s
f ) 43.654s

Answers

Answer:

a) 98 m/s

b) 19.6 s

c)  1449.8 m

d)  29.6 s

e)  168.6 m/s

f)  46.8 s

Explanation:

Given that

Acceleration of the rocket, a = 5 m/s²

Altitude of the rocket, s = 960 m

a)

Using the equation of motion

v² = u² + 2as, considering that the initial velocity, u is 0. Then

v² = 2as

v = √2as

v = √(2 * 5 * 960)

v = √9600

v = 98 m/s

b)

Using the equation of motion

S = ut + ½at², considering that initial velocity, u = 0. So that

S = ½at²

t² = 2s/a

t² = (2 * 960) / 5

t² = 1920 / 5

t² = 384

t = √384 = 19.6 s

c)

Using the equation of motion

v² = u² + 2as, where u = 98 m/s, a = -9.8 m/s², so that

0 = 98² + 2(-9.8) * s

9600 = 19.6s

s = 9600/19.6

s = 489.8 m

The maximum altitude now is

960 m + 489.8 m = 1449.8 m

d)

Using the equation of motion

v = u + at, where initial velocity, u = 98 m, a = -9.8 m/s. So that

0 = 98 +(-9.8 * t)

98 = 9.8t

t = 98/9.8

t = 10 s

Total time then is, 10 + 19.6 = 29.6 s

e) using the equation of motion

v² = u² + 2as, where initial velocity, u = o, acceleration a = 9.8 m/s, and s = 1449.8 m. So that,

v² = 0 + 2 * 9.8 * 1449.8

v² = 28416.08

v = √28416.08

v = 168.6 m/s

f) using the equation of motion

S = ut + ½at², where s = 1449.8 m and a = 9.8 m/s

1449.8 = 0 + ½ * 9.8 * t²

2899.6 = 9.8t²

t² = 2899.6/9.8

t² = 295.88

t = √295.88

t = 17.2 s

total time in air then is, 17.2 + 29.6 = 46.8 s

I really need help with this question someone plz help !

Answers

Answer:weight

Explanation:weight

At an intersection of hospital hallways, a convex spherical mirror is mounted high on a wall to help people avoid collisions. The magnitude of the mirror's radius of curvature is 0.560 m.
A) Locate the image of a patient10.6m from the mirror. B) Indicate whether the image is upright or inverted.C) Determine the magnification of the image.

Answers

Answer:

Explanation:

For a convex mirror, the value of its image distance and its focal length are negative.

using the mirror formula 1/f = 1/u+1/v

f is the focal length = Radius of curvature/2 = 0.560/2

f= 0.28m

u is the object distance = 10.6m

v is the position of the image = ?

On substitution;

1/0.28 = 1/10.6 + 1/-v

3.57 = 0.094 - 1/v

3.57 - 0.094 = -1/v

3.476 = -1/v

v = -1/3.476

v = -0.2877m

B) Since the image distance is negative, this means that the image is an upright and a virtual image. All Upright images has their image distance to be negative.

C) Magnification = Image distance/object distance

Magnification  = 0.2877/10.6

Magnification = 0.0271

An engine draws energy from a hot reservoir with a temperature of 1250 K and exhausts energy into a cold reservoir with a temperature of 322 K. Over the course of one hour, the engine absorbs 1.37 x 105 J from the hot reservoir and exhausts 7.4 x 104 J into the cold reservoir.

1) What is the power output of this engine?

2) What is the maximum (Carnot) efficiency of a heat engine running between these two reservoirs?

3) What is the actual efficiency of this engine?

Answers

Answer:

The power output of this engine is  [tex]P = 17.5 W[/tex]

The  the maximum (Carnot) efficiency is  [tex]\eta_c = 0.7424[/tex]

The  actual efficiency of this engine is  [tex]\eta _a = 0.46[/tex]

Explanation:

From the question we are told that

    The temperature of the hot reservoir is  [tex]T_h = 1250 \ K[/tex]

      The temperature of the cold reservoir  is  [tex]T_c = 322 \ K[/tex]

     The energy absorbed from the hot reservoir is [tex]E_h = 1.37 *10^{5} \ J[/tex]

       The energy exhausts into  cold reservoir is  [tex]E_c = 7.4 *10^{4} J[/tex]

The power output is mathematically represented as

      [tex]P = \frac{W}{t}[/tex]

Where t is the time taken which we will assume to be 1 hour =  3600 s  

W is the workdone which is mathematically represented as

      [tex]W = E_h -E_c[/tex]

substituting values

       [tex]W = 63000 J[/tex]

So

    [tex]P = \frac{63000}{3600}[/tex]

    [tex]P = 17.5 W[/tex]

The Carnot efficiency is mathematically represented as

          [tex]\eta_c = 1 - \frac{T_c}{T_h}[/tex]

         [tex]\eta_c = 1 - \frac{322}{1250}[/tex]

         [tex]\eta_c = 0.7424[/tex]

The actual efficiency is mathematically represented as

        [tex]\eta _a = \frac{W}{E_h}[/tex]

substituting values

         [tex]\eta _a = \frac{63000}{1.37*10^{5}}[/tex]

         [tex]\eta _a = 0.46[/tex]

     

An LC circuit has a 6.00 mH inductor. The current has its maximum value of 0.570 A at t =0s. A short time later the capacitor reaches its maximum potential difference of 66.0 V. What is the value of the capacitance?

Answers

Answer:

C = 44.75 x 10⁻⁸ F

Explanation:

Assuming no loss of energy between capacitor and inductor

energy in inductor initially = 1/2 Li₀² where L is inductance and i₀ is peak current .

= .5 x 6 x 10⁻³ x .57²

= .97 x 10⁻³ J .

This energy is transferred to capacitor .

energy of capacitor = 1/2 CV²

= .5 x C x 66²

= 2178 C

2178C = .97 x 10⁻³

C = 44.75 x 10⁻⁸ F .

The magnetic energy stored in the inductor is transformed into electrical energy stored in the capacitor. The value of capacitance for the given circuit is 44.75 x 10⁻⁸ F

Finding the capacitance:

According to the law of conservation of energy, the magnetic energy stored in the inductor will be gradually lost and this energy will be stored in the capacitor as electrical energy.

Initially, the energy in the inductor is:

E = 1/2 Li₀²

where L is inductance

and i₀ is peak current.

E = 0.5 × 6 × 10⁻³ × (0.57)²

E = 0.97 × 10⁻³J

This energy is transformed into electrical energy stored in the capacitor.

So the capacitor energy is:

E = 1/2 CV²

where C is the capacitance

E = 0.5 × C × 66²

E = 2178 C

0.97 x 10⁻³ = 2178 C

C = 44.75 x 10⁻⁸ F

Learn more about capacitance:

https://brainly.com/question/12356566?referrer=searchResults

A dimension is a physical nature of a quantity.
(i) give two (2) limitations of dimensional analysis..
(ii) if velocity (v), time (T) and force (F) were chosen as basic quantities, find the dimensions of mass?​

Answers

Answer:

i) A dimension is the physical nature of a quantity. The two limitations of dimensional analysis is as following:

Dimesnional analysis is unable to derive relation when a physical quantity depends on more than three factors with dimensions. It is unable to derive a formula that contain exponential function, trigonometric function, and logarithmic function.

ii) Given:

Velocity = v

Time = t

Force = F

Force = mass x acceleration

         = mass x velocity/time

So, mass= (force x time) / velocity

[mass] = Ftv^-1

Hence, dimesnion of mass is Ftv^-1.

If two twins (54 kg each) were 0.02 m apart, what is the force of gravity between them?

Answers

Answer:

Force, [tex]F=4.86\times 10^{-4}\ N[/tex]

Explanation:

We have,

Masses of two twins are 54 kg each

They are placed at a distance of 0.02 m

It is required to find the force of gravity between them. The formula used to find the gravitational force between masses is given by :

[tex]F=G\dfrac{m_1m_2}{r^2}[/tex]

plugging all the known values:

[tex]F=6.67\times 10^{-11}\times \dfrac{54^2}{(0.02)^2}\\\\F=4.86\times 10^{-4}\ N[/tex]

So, the force of gravity between them is [tex]4.86\times 10^{-4}\ N[/tex].  

A 2-kilogram toy car is traveling forward at 1 meter per second when it is hit in the rear by a 3-kilogram toy truck that was traveling at 3 meters per second just before impact. If the two toys stick together, their speed immediately after the collision is

Answers

Answer:

v = 1.4 m/s

Explanation:

This problem is about an inelastic collision. The total momentum before the collision is equal to total momentum after (because of the conservation of momentum law):

[tex]m_1v_1-m_2v_2=(m_1+m_2)v[/tex]  (1)

m1: mass of the toy car = 2 kg

m2: mass of the toy truck = 3 kg

v1: speed of the toy car = 1 m/s

v2: speed of the truck car = 3 m/s

v: speed of both car and truck after the collision = ?

In the equation (1) the negative sign of m2v2 is because of the opposite direction of the toy truck respect to the toy car.

You solve the equation (1) for v, and you replace the values of all variables involved:

[tex]v=\frac{m_1v_1-m_2v_2}{m_1+m_2}\\\\v=\frac{(2kg)(1m/s)-(3kg)(3m/s)}{2kg+3kg}=-1.4\frac{m}{s}[/tex]

this velocity is negative, then, the direction of motion of both car and truck is in the direction of the truck

Hence, the speed of both car and truck toys is 1.4 m/s

Two parallel, vertical, plane mirrors, 38.8 cm apart, face each other. A light source at point P is 30.1 cm from the mirror on the left and 8.7 cm from the mirror on the right.
(a) How many images of point P are formed by the mirrors?
(b) Find the distance from the mirror on the right to the two nearest images behind the mirror.
first nearest image=
second nearest image=
(c) Find the number of reflections of light rays for each of these images.
first nearest image=
second nearest image=

Answers

Answer:

Explanation shown below.

Explanation:

1.The number of images formed by 2 parallel mirrors is an infinite number of images.

2. The characteristics of a plane mirror is such that the object distance equals the image distance.

Hence the object distance is 8.7cm from the right; the image formed would be 8.7cm behind the mirror.

Now a second image is going to be formed by the left mirror which is going to have an image distance of 30.1cm behind the mirror.

Now this image would be reflected on the right side to form a new image which is going to be seen as 38.8 +30.1 = 68.9cm behind the right Mirror .

Hence the shortest distances are 8.7cm and 68.9cm

3. The number of reflections is infinite for both cases.

A 0.150 kg lump of clay is dropped from a height of 1.45 m onto the floor. It sticks to the floor and does not bounce.

What is the magnitude of the impulse imparted to the clay by the floor during the impact? Assume that the acceleration due to gravity is =9.81 m/s2.

Answers

Answer:

J = 0.800 kg m/s

Fmax = 291 N

Explanation:

During the fall, energy is conserved.

PE = KE

mgh = ½ mv²

v = √(2gh)

v = √(2 × 9.81 m/s² × 1.45 m)

v = 5.33 m/s

Alternatively, you can use kinematics to find the velocity.

Impulse = change in momentum

J = Δp

J = mΔv

J = (0.150 kg) (5.33 m/s)

J = 0.800 kg m/s

Impulse = area under F vs t graph

J = ∫ F dt

J = ½ Fmax Δt

(0.800 kg m/s) = ½ Fmax (0.0055 ms)

Fmax = 291 N

To get up on the roof, a person (mass 69.0 kg) places a 6.40 m aluminum ladder (mass 11.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes (in N) of the forces on the ladder at the top and bottom

Answers

Answer:

N = 243.596 N ≈ 243.6 N

Explanation:

mass of person = 69 kg ( M )

mass of aluminium ladder = 11 kg ( m )

length of ladder = 6.4 m ( l )

base of ladder = 2 m from the house (d )

center of mass of ladder = 2 m from the bottom of ladder

person on ladder standing = 3 m from bottom of ladder

Calculate the magnitudes of the forces at the top and bottom of the ladder

The net torque on the ladder = o ( since it is at equilibrium )

assuming: the weight of the person( mg) acting at a distance x along the ladder. the weight of the ladder ( mg) acting halfway along the ladder and the reaction N acting on top of the ladder

X = l/2

x = 6.4 / 2 = 3.2

find angle formed by the ladder

cos ∅ = d/l

    ∅ = [tex]cos^{-1][/tex] 2/6.4 = [tex]cos^{-1}[/tex]0.3125  ≈ 71.79⁰

remember the net torque around is = zero

to calculate the magnitude of forces on the ladder we apply the following formula

[tex]N = \frac{mg(dcosteta)+ Mgxcosteta}{lsinteta}[/tex]

m = 11 kg, M = 69 kg, l = 6.4 , x = 3,  teta( ∅ )= 71.79⁰, g = 9.8

back to equation  N = [tex]\frac{11*9.8(2*cos71.79)+ 69*9.8*3* cos71.79}{6.4sin71.79}[/tex]

N = (67.375 + 633.938) / 2.879

N = 243.596 N ≈ 243.6 N

Mr. Patel is photocopying lab sheets for his first period class. A particle of toner carrying a charge of 4.0 * 10^9 C in the copying machine experiences an electric field of 1.2 * 10^6 N/C as it’s pulled toward the paper. What is the electric force acting on the toner particle?

Answers

Answer:

4.8 × 10^15 N

Explanation:

Electric Field is defined as Force per unit Charge.

This is expressed mathematically as;

E= F/Q

Where E- Electric Field

F- Force

Q- charge

From the expression above by change of subject of formula for F, we have;

F=E×Q

= 1.2 * 10^6 ×4.0 * 10^9

= 4.8 × 10^15 N

A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across from a tree on the opposite bank, the surveyor walks distance, D = 130 m along the river to establish a baseline. She then sights across to the tree and reads that the angle from the baseline to the tree is an angle θ = 25°. How wide is the river?

Answers

Answer:

The width of the river is  [tex]z = 60.62 \ m[/tex]

Explanation:

From the question we are told that

     The distance of the base line is D = 130 m

       The angle is  [tex]\theta = 25^o[/tex]

A diagram illustration the question is shown on the first uploaded image

    Applying Trigonometric Rules for Right-angled Triangle,

            [tex]tan 25 = \frac{z}{130}[/tex]

Now making  z the subject

           [tex]z = 130 * tan (25)[/tex]

          [tex]z = 60.62 \ m[/tex]

Assume the three blocks (m. = 1.0 kg, m = 20 kg and m = 40 ko) portrayed in the figure below move on a frictionless surface and a force F: 36w acts as shown on the 4.0 kg block.
a) Determine the acceleration given this system (in m/s2 to the right). m/s2 (to the right)
b) Determine the tension in the cord connecting the 4.0 kg and the 1.0 kg blocks in N). Determine the force exerted by the 1.0 kg block on the 2.0 kg block (in N). N (a) What If How would your answers to parts (a) and (b) of this problem change if the 2.0 kg block was now stacked on top of the 1.0 kg block? Assume that the 2.0 kg block sticks to and does not slide on the 1.0 kg block when the system is accelerated.
(Enter the acceleration in m/s2 to the right and the tension in N.) acceleration m/s (to the right) tension

Answers

Answer:

a) 5.143 m/s^2

b) T = 15.43 N

c) Fr = 10.29 N

d) 5.143 m/s^2 , T = 15.43 N

Explanation:

Given:-

- The mass of left most block, m1 = 1.0 kg

- The mass of center block, m2 = 2.0 kg

- The mass of right most block, m3 = 4.0 kg

- A force that acts on the right most block, F = 36 N

Solution:-

a)

- For the first part we will consider the three blocks with masses ( m1 , m2 , and m3 ) as one system on which a force of F = 36 N is acted upon. The masses m1 and m3 are connected with a string with tension ( T ) and the m1 and m2 are in contact.

- We apply the Newton's second law of motion to the system with acceleration ( a ) and the combined mass ( M ) of the three blocks as follows:

                       [tex]F = M*a\\\\36 = ( 1 + 2 + 4 )*a\\\\a = \frac{36}{7}\\\\a = 5.143 \frac{m}{s^2}[/tex]

Answer: The system moves in the direction of external force ( F ) i.e to the right with an acceleration of 5.143 m/s^2

b)

- The blocks with mass ( m1 and m3 ) are connected with a string with tension ( T ) with a combined acceleration of ( a ).

- We will isolate the massive block ( m3 ) and notice that two opposing forces ( F and T ) act on the block.

- We will again apply the Newton's 2nd law of motion for the block m3 as follows:

                       [tex]F_n_e_t = m_3 * a\\\\F - T = m_3 * a\\\\36 - T = 4*5.143\\\\T = 36 - 20.5714\\\\T = 15.43 N[/tex]

Answer:- A tension of T = 15.43 Newtons acts on both blocks ( m1 and m3 )

                       

c)

- We will now isolate the left most block ( m1 ) and draw a free body diagram. This block experiences two forces that is due to tension ( T ) and a reaction force ( Fr ) exerted by block ( m2 ) onto ( m3 ).

- Again we will apply the the Newton's 2nd law of motion for the block m3 as follows:

                         [tex]F_n_e_t = m_1*a\\\\T - F_r = m_1*a\\\\15.43 - F_r = 1*5.143\\\\F_r = 15.43 - 5.143\\\\F_r = 10.29 N[/tex]

- The reaction force ( Fr ) is contact between masses ( m1 and m2 ) exists as a pair of equal magnitude and opposite direction acting on both the masses. ( Newton's Third Law of motion )

Answer: The block m2 experiences a contact force of ( Fr = 10.29 N ) to the right.

d)

- If we were to stack the block ( m2 ) on-top of block ( m1 ) such that block ( m2 ) does not slip we the initial system would remain the same and move with the same acceleration calculated in part a) i.e 5.143 m/s^2

- We will check to see if the tension ( T ) differs or not as the two block ( m1 and m2 ) both experience the same Tension force ( T ) as a sub-system. with a combined mass of ( m1 + m2 ).

- We apply the Newton's 2nd law of motion for the block m3 as follows:

                            [tex]T = ( m_1 + m_2 ) *a\\\\T = ( 1 + 2 ) * 5.143\\\\T = 15.43 N[/tex]

Answer: The acceleration of the whole system remains the same at a = 5.143 m/s^2 and the tension T = 15.43 N also remains the same.

A solid sphere has a temperature of 556 K. The sphere is melted down and recast into a cube that has the same emissivity and emits the same radiant power as the sphere. What is the cube's temperature in kelvins

Answers

Answer:

Cube temperature = 526.83 K

Explanation:

Volume of the cube and sphere will be the same.

Now, volume of cube = a³

And ,volume of sphere = (4/3)πr³

Thus;

a³ = (4/3)πr³

a³ = 4.1187r³

Taking cube root of both sides gives;

a = 1.6119r

Formula for surface area of sphere is;

As = 4πr²

Also,formula for surface area of cube is; Ac = 6a²

Thus, since a = 1.6119r,

Then, Ac = 6(1.6119r)²

Ac = 15.5893r²

The formula for radiant power is;

Q' = eσT⁴A

Where;

e is emissivity

σ is Stefan boltzman constant = 5.67 x 10^(-8) W/m²k

T is temperate in kelvin

A is Area

So, for the cube;

(Qc)' = eσ(Tc)⁴(Ac)

For the sphere;

(Qs)' = eσ(Ts)⁴(As)

We are told (Qc)' = (Qs)'

Thus;

eσ(Tc)⁴(Ac) = eσ(Ts)⁴(As)

eσ will cancel out to give;

(Tc)⁴(Ac) = (Ts)⁴(As)

Since we want to find the cube's temperature Tc,

(Tc)⁴ = [(Ts)⁴(As)]/Ac

Plugging in relevant figures, we have;

(Tc)⁴ = [556⁴ × 4πr²]/15.5893r²

r² will cancel out to give;

(Tc)⁴ = [556⁴ × 4π]/15.5893

Tc = ∜([556⁴ × 4π]/15.5893)

Tc = 526.83 K

Thana reminds Alston that because the electric field is uniform, a constant electric force is exerted on the electron. Alston recognizes that, in this case, they can use the kinematic equations to describe the motion of the charged particle while it is inside the region containing the electric field. He asks Thana to write down an equation they can use to calculate the acceleration of the particle while it is inside the region containing a uniform electric field. Which of These equations is correct?

Answers

Answer:

  a = - e E / m

a = - 1,758 10¹¹ E

Explanation:

For this exercise we can use Newton's second law

        F = m a

where the force is electric

 the forces given by the product of the charge by the electric field

         F = q E

in this case tell us that the charge is the charge of the electron

         q = -e = - 1.6 10⁻¹⁹ C

we substitute

        - e E = m a

          a = - e E / m

we calculate

           a = - 1.6 10⁻¹⁹ / 9.1 10⁻³¹ E

           a = - 1,758 10¹¹ E

The negative sign indicates that the acceleration is in the opposite direction to the electric field

The inhabitants of a small island export a cloth made from a plant that grows only on their island. A clothier from New York, believing that he can save money by "cutting out the middleman," decides to travel to the island and buy the cloth himself. Ignorant of the local custom where strangers are offered outrageous prices initially, the clothier accepts (much to everyone's surprise) the initial price of 400 tepizes/m^2. The price of this cloth in New York is 120 dollars/yard^2. If the clothing maker bought 500 m^2 of this fabric, how much money did he lose? Use 1tepiz= 0.625dollar and 0.9144m = 1yard.

Answers

Answer:

Explanation:

purchase price = 400 tepizes / m²

1 tepiz = .625 dollar

purchase price in terms of dollar = 400 x .625 dollar / m²

= 250 dollar / m²

.9144 m = 1 yard

1 m = 1.0936 yard

1m² = 1.196 yard²

price in terms of dollar / yards²

= 250 / 1.196 dollar / yard²

= 209 dollar / yard²

Price of cloth in New York = 120 dollar / yard²

loss = 209 - 120 = 89 dollar / yard²

500 m² = 500 x 1.196 yard²

= 598 yard²

net loss in purchasing 500 m² cloth

= 598 x 89

= 53222 dollar .

1. Calculate the centripetal force exerted on a 900kg900kg car that rounds a 600m600m radius curve on horizontal ground at 25.0m/s25.0m/s. 2. Static friction prevents the car from slipping. Find the magnitude of the frictional force between the tires and the road that allows the car to round the curve without sliding off in a straight line.

Answers

Explanation:

It is given that,

Mass of a car is 900 kg

Radius of curve is 600 m

Speed of the car in the curve is 25 m/s

We need to find the centripetal force exerted on a car. The formula used to find the centripetal force is given by :

[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{900\times (25)^2}{600}\\\\F=937.5\ N[/tex]

So, the centripetal force exerted on a car is 937.5 N.

Static friction prevents the car from slipping. It means that the magnitude of centripetal force is balanced by the frictional force. So, the frictional force of 937.5 N is acting on the car.  

If a light is moved twice (2x) as far from a surface, the area the light covers is ___ as big.

- 2x
- 1/4
- 1/2
- 4x

Answers

Answer:

The correct option is;

- 4x

Explanation:

From the inverse square law, as the distance from the source of a physical quantity increases, the intensity of the source is spread over an area proportional to the square of the distance of the object from the source

The inverse square law can be presented as follows;

[tex]I = \dfrac{S}{4\times \pi \times r^2 }[/tex]

As the distance, r, increases, the surface it covers also increases by the power of 2

Therefore, where the distance increases from r to 2·r, we have;

When, I, remain constant

[tex]I = \dfrac{4\times S}{4\times \pi \times (2\cdot r)^2 } = I = \dfrac{4\times S}{4\times 4\times \pi \times r^2 } = \dfrac{S}{4\times \pi \times r^2 }[/tex]

The surface increases to 4·S by the inverse square law

Therefore, the correct option is 4 × x.

Water is traveling through a horizontal pipe with a speed of 1.7 m/s and at a pressure of 205 kPa. This pipe is reduced to a new pipe which has a diameter half that of the first section of pipe. Determine the speed and pressure of the water in the new, reduced in size pipe.

Answers

Answer:

The velocity is  [tex]v_2 = 6.8 \ m/s[/tex]

The pressure is  [tex]P_2 = 204978 Pa[/tex]

Explanation:

From the question we are told that

 The speed at which water is travelling through is  [tex]v = 1.7 \ m/s[/tex]

  The pressure is  [tex]P_1 = 205 k Pa = 205 *10^{3} \ Pa[/tex]

   The diameter of the new pipe is [tex]d = \frac{D}{2}[/tex]

Where D is the diameter of first pipe

   

According to the principal of continuity we have that

       [tex]A_1 v_1 = A_2 v_2[/tex]    

Now  [tex]A_1[/tex] is the area of the first pipe which is mathematically represented as

       [tex]A_1 = \pi \frac{D^2}{4}[/tex]

and  [tex]A_2[/tex] is the area of the second pipe which is mathematically represented as  

       [tex]A_2 = \pi \frac{d^2}{4}[/tex]

Recall   [tex]d = \frac{D}{2}[/tex]

        [tex]A_2 = \pi \frac{[ D^2]}{4 *4}[/tex]

        [tex]A_2 = \frac{A_1}{4}[/tex]

So    [tex]A_1 v_1 = \frac{A_1}{4} v_2[/tex]

substituting value

        [tex]1.7 = \frac{1}{4} * v_2[/tex]    

        [tex]v_2 = 4 * 1.7[/tex]    

       [tex]v_2 = 6.8 \ m/s[/tex]

   

According to Bernoulli's equation  we have that

     [tex]P_1 + \rho \frac{v_1 ^2}{2} = P_2 + \rho \frac{v_2 ^2}{2}[/tex]

substituting values

     [tex]205 *10^{3 }+ \frac{1.7 ^2}{2} = P_2 + \frac{6.8 ^2}{2}[/tex]

     [tex]P_2 = 204978 Pa[/tex]

Which of the following best describes the current age of the Sun?

A.) It is near the end of its lifespan.

B.) It is about halfway through its lifespan.

C.) It is early in its lifespan.

D.) We do not have a good understanding of the Sun's age.

Answers

Answer:  Its b, The only problem with this is is there supposed to be a picture?

Explanation: NASA has used there fancy gadgets to figure this out but if there was a picture, this answer could be different.

A car moving in a straight line starts at X=0 at t=0. It passesthe point x=25.0 m with a speed of 11.0 m/s at t=3.0 s. It passes the point x=385 with a speed of 45.0 m/s at t=20.0 s. Find the average velocity and the average acceleration between t=3.0 s and 20.0 s.

Answers

Answer:

Average velocity v = 21.18 m/s

Average acceleration a = 2 m/s^2

Explanation:

Average speed equals the total distance travelled divided by the total time taken.

Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)

Average acceleration equals the change in velocity divided by change in time.

Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)

Where;

v1 and v2 are velocities at time t1 and t2 respectively.

And x1 and x2 are positions at time t1 and t2 respectively.

Given;

t1 = 3.0s

t2 = 20.0s

v1 = 11 m/s

v2 = 45 m/s

x1 = 25 m

x2 = 385 m

Substituting the values;

Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)

v = (385-25)/(20-3)

v = 21.18 m/s

Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)

a = (45-11)/(20-3)

a = 2 m/s^2

Having aced your Physics 2111 class, you get a sweet summer-job working in the International Space Station. Your room-mate, Cosmonaut Valdimir tosses a banana at you at a speed of 16 m/s. At exactly the same instant, you fling a scoop of ice cream at Valdimir along exactly the same path. The collision between banana and ice cream produces a banana split 8.2 m from your location 1.4 s after the banana and ice cream were launched.

1. How fast did you toss the ice cream?

2. How far were you from Valdimir when you tossed the ice cream?

Answers

Answer:

a

The speed is   [tex]s = 5.857 m/s[/tex]

b

The distance is  [tex]D = 22.4 \ m[/tex]

Explanation:

From the question we are told that

     The speed of the banana is  [tex]v = 16 \ m/s[/tex]

   The distance from my  location is  [tex]d = 8.2 \ m[/tex]  

     The time taken is  [tex]t = 1.4 \ s[/tex]

The speed of the ice cream is

          [tex]s = \frac{d}{t}[/tex]

substituting values

        [tex]s = \frac{8.4}{1.4}[/tex]

        [tex]s = 5.857 m/s[/tex]

The distance of separation between i and Valdimir is the same as the distance covered by the banana

   So  

          [tex]D = v * t[/tex]

substituting values

        [tex]D = 16 * 1.4[/tex]

        [tex]D = 22.4 \ m[/tex]

     

two blocks with masses 2 kg and 4 kg are pushed from rest by the same amount of fore for a distance of 100 m on a frictionless floor. the final kinetic energy of the 2 kg block after the 100 m distance is

Answers

Answer:

the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J

Explanation:

mass of block A = 2 kg

mass of block B = 4 kg

distance the blocks were pushed = 100 m

NB: Blocks were pushed the same distance at the same equal time period. And the ground is without friction.

Work done in moving the 2 kg mass along the 100 m distance is,

work = force x distance moved

force exerted by the 2 kg mass = 2 x 9.81 m/s^2(acceleration due to gravity)

force = 19.62 N

therefore,

work done = 19.62 x 100 = 1962 Joules of work.

According to energy conservation principles, the kinetic energy impacted of the 2 kg mass through this distance will be equal to the work done in moving the 2 kg mass through this distance.

Therefore, the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J

Other Questions
What should I buy? A study conducted by a research group in a recent year reported that of cell phone owners used their phones inside a store for guidance on purchasing decisions. A sample of cell phone owners is studied. Round the answers to four decimal places. "The Crisis Number 1" served as inspiration to American troops during which war?Select the best answer from the choice provided.A. the American RevolutionB. the French RevolutionC. the French and Indian WarD. the American Civil War Describe the impact that the following periods, movements, and reforms had on the treatment of mental illness: the Enlightenment Period, the asylum movement, and early reforms of asylums. Define Acid dissociation constant constant A gym charges $45 per month and a $75 one-time starting fee. Which of thesewill show how much it costs to join the gym for one year? Q3. Explain any one congruency Property with real world example This Question: 4 pts1 of 11 (0 complete)Music PreferencesStudents at a high school were polled to determine the type of music they preferred. There were 1960 students whocompleted the poll. Their responses are represented in the circle graph.Rap 916Alternative 46Rock and Roll 279Country 183Jazz 32Other 89About What % of the students who completed the poll preferred rock and roll music.(Round to one decimal place as needed.) which of the following disorders does not affect the eye? Fill in the blanks with the correct word in parentheses.YOU MAY TAKE THIS ONLY ONCE.The old computer =(El/La) computadora vieja.A good student =(El / Un) estudiante bueno.The interesting classes =(Las Unas ) clases interesantes.Some small houses =(Unos / Unas ) casas pequeas. Select the correct answer.Choose the sentence that is not logically connected in the paragraph(1) One final effect of radio and TV on the language must must be noted.(2) There is no doubt that these great media of information have cutdown considerably the time that used to be devoted to reading (3)Radio and TV may enhance the spoken word. (4) They tend to lowercomprehension levelsOA 1OB 2OC 3OD 4 A charity receives 2025 contributions. Contributions are assumed to be mutually independent and identically distributed with mean 3125 and standard deviation 250. Calculate the approximate 90th percentile for the distribution of the total contributions A plant with variegated (two-coloured) leaves was left in the sun for several hours. A piece of one of its leaves were then detached (removed) and tested for sugar. Explain, as fully as you can, why the yellow region of the leaf had not produced sugar. (5 marks) Using a broom to clean sidewalks and driveways is a way to reduce water pollution. A bakery is 10 yards wide and 17 yards long. The baker wants to put a wooden shelf around the inside of the bakery. The wooden shelving costs $10.82 per yard. How much will the baker's shelf cost? hhheeeelllllllllllllppppppppp Solve the problem. When going more than 38 miles per hour, the gas mileage of a certain car fits the model where x is the speed of the car in miles per hour and y is the miles per gallon of gasoline. Based on this model, at what speed will the car average 15 miles per gallon? (Round to nearest whole number.) Find the slope of the line. please. help. ANSWER ASAPP. Changes in monetary policy occur when the Federal Reserve 1.adjusts business laws to affect the money supply. 2.changes taxation levels to affect the economy. 3.changes spending levels to affect the economy. 4.adjusts interest rates to affect the money supply. When we move from the bottom to the top of the periodic table:Electronegativity increases and ionisation energy decreasesBoth electronegativity and ionisation energy decreasesBoth electronegativity and ionisation energy increasesThey remain the same Factor the polynomial expression x4 + 18x2 + 81