Answer:
Explanation:
moment of inertia of the rod = 1/3 mL² , m is mass and L is length of rod.
1/3 x .154 x .35²
= .00629
moment of inertia of putty about the axis of rotation
= m d² , m is mass of putty and d is distance fro axis
= .011 x( .35 / 3 )²
= .00015
Total moment of inertia I = .00644 kgm²
angular momentum of putty about the axis of rotation
= mvRsinθ
m is mass , v is velocity , R is distance where it strikes the rod and θ is angle with the rod at which putty strikes
= .011 x 9 x .35 / 3 x sin 29
= .0056
Applying conservation of angular momentum
angular momentum of putty = angular momentum of system after of collision
.0056 = .00644 ω where ω is angular velocity of the rod after collision
ω = .87 rad /s .
Rotational energy
= 1/2 I ω²
I is total moment of inertia
= .5 x .00644 x .87²
= 2.44 x 10⁻³ J .
Consider two copper wires of equal cross-sectional area. One wire has 3 times the length of the other. How do the resistivities of these two wires compare?
Explanation:
The relation between resistance and resistivity is given by :
[tex]R=\rho \dfrac{l}{A}[/tex]
[tex]\rho[/tex] is resistivity of material
l is length of wire
A is area of cross section of wire
Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is
During a football game, a receiver has just caught a pass and is standing still. Before he can move, a tackler, running at a velocity of 2.60 m/s, grabs and holds onto him so that they move off together with a velocity of 1.30 m/s. If the mass of the tackler is 122 kg, determine the mass of the receiver. Assume momentum is conserved.
Answer:
122kgExplanation:
Using the law of conservation of momentum which states that 'the sum of momentum of bodies before collision is equal to their sum after collision. The bodies will move together with a common velocity after collision.
Momentum = Mass * Velocity
Before collision;
Momentum of receiver m1u1= 0 kgm/s (since the receiver is standing still)
Momentum of the tackler
m2u2 = 2.60*122 = 317.2 kgm/s
where m2 and u2 are the mass and velocity of the tacker respectively.
Sum of momentum before collision = 0+317.2 = 317.2 kgm/s
After collision
Momentum of the bodies = (m1+m2)v
v = their common velocity
m1 = mass of the receiver
Momentum of the bodies = (122+m1)(1.30)
Momentum of the bodies = 158.6+1.30m1
According to the law above;
317.2 = 158.6+1.30m1
317.2-158.6 = 1.30m1
158.6 = 1.30m1
m1 = 158.6/1.30
m1 = 122kg
The mas of the receiver is 122kg
Zinc is added to a breaker containing hydrochloric acid and the beaker gets warm what type os reaction is this
Answer:
Exothermic
Explanation:
Depending on the unit you are in, the answer may vary.
This is an exothermic reaction because it produces heat (the beaker gets warm).
When Marcel finds the distance L from the previous part, it turns out to be greater than Lend, the distance from the pivot to the end of the seesaw. Hence, even with Jacques at the very end of the seesaw, the twins Gilles and Jean exert more torque than Jacques does. Marcel now elects to balance the seesaw by pushing sideways on an ornament (shown in red) that is at height h above the pivot. (Figure 3)With what force in the rightward direction, Fx, should Marcel push? If your expression would give a negative result (using actual values) that just means the force should be toward the left.Express your answer in terms of W, Lend, w, L2, L3, and h.
Answer:
Fx = - (1/h)( wL2 + wL3 - wLend )
Explanation:
Assuming The twins Gilles and Jean has a weight ( w ) each
The torque that would balance the equation would be = wL2 + wL3 -------- 1
THEREFORE the ccw torques are = wLend + Fh ----------- 2
hence equation 2 equals equation 1
= wLend + Fh = wL2 + wL3 --------- 3
equation 3 can as well be represented as
F = ( 1/h) ( wL2 + wL3 - wLend )---------- 4
From equation 4 it can be seen that F is on the left hand side therefore the value of Fx is negative
therefore equation 4 is represented as
Fx = - (1/h)( wL2 + wL3 - wLend )
Convert from scientific notation to standard form
9.512 x 10-8
John heats 1 kg of soup from 25 °C to 70 °C for 15 minutes by a heater. How long does the same heater take to heat 1.5 kg of the same kind of soup from 20 °C to 80 °C? The energy output per unit time by the heater is constant.
Answer:
30 minutes
Explanation:
Energy per time is constant, so:
E₁ / t₁ = E₂ / t₂
m₁C₁ΔT₁ / t₁ = m₂C₂ΔT₂ / t₂
(1 kg) C (70°C − 25°C) / 15 min = (1.5 kg) C (80°C − 20°C) / t
(1 kg) (45°C) / 15 min = (1.5 kg) (60°C) / t
3/min = 90 / t
t = 30 min
Problem 3A solid uniform sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping down an inclined plane of vertical height 5.3 m. What is the angular speed of the sphere at the bottom of the inclined plane
Answer:
5.1 rad/s
Explanation:
Mechanical energy of the system is conserved since no external work is done on the sphere.
[tex]mgh = mv^2/2 + I\omega^2/2[/tex]
Substituting v = ωr and I = 2 m r^2/5, we get,
=> [tex]mgh=m(\omega r)^2/2 + (2\omega r^2/5)\omega^2/2[/tex]
=> [tex]mgh = m\omega^2r^2/2 + m\omega^2r^2/5[/tex]
=> [tex]gh =\omega^2r^2/2+\omega^2r^2/5[/tex]
=> [tex]gh = 7\omega^2 r^2/10[/tex]
=> [tex]\omega r = (10gh/7)^{1/2}[/tex]
=> [tex]\omega = (1/r)(10gh/7)^{1/2} = (1 / 1.7)(10\times 9.8\times 5.3 / 7)^{1/2}[/tex] = 5.1 rad/s
A small car and an SUV are at a stoplight. The car has a mass equal to half that of the SUV, and the SUV's engine can produce a maximum force equal to twice that of the car. When the light turns green, both drivers floor it at the same time. Which vehicle pulls ahead of the other vehicle after a few seconds?
Complete Question
A small car and an SUV are at a stoplight. The car has amass equal to half that of the SUV, and the SUV's engine can produce a maximum force equal to twice that of the car. When the light turns green, both drivers floor it at the same time. Which vehicle pulls ahead of the other vehicle after a few seconds?
a) It is a tie.
b) The SUV
c) The car
Answer:
The correct option is a
Explanation:
From the question we are told that
The mass of the car is [tex]m_c[/tex]
The force of the car is F
The mass of the SUV is [tex]m_s = 2 m_c[/tex]
The force of the SUV is [tex]F_s = 2 F[/tex]
Generally force of the car is mathematically represented as
[tex]F= m_ca_c[/tex]
[tex]a_c[/tex] is acceleration of the car
Generally force of the car is mathematically represented as
[tex]F_s = m_s * a_s[/tex]
[tex]a_s[/tex] is acceleration of the SUV
=> [tex]2 F = 2 m_c a_s[/tex]
[tex]F = m_c a_s[/tex]
=> [tex]m_c a_s = m_ca_c[/tex]
So [tex]a_s = a_c[/tex]
This means that the acceleration of both the car and the SUV are the same
a 15-nC point charge is at the center of a thin spherical shell of radius 10cm, carrying -22nC of charge distributed uniformly over its surface. find the magnitude and direction of the electric field (a) 2.2cm,(b)5.6cm,and (c)14 cm from the point charge.
Answer:
A) E = 278925.62 N/C with direction; radially out.
B) E = 43048.47 N/C with direction radially out.
C) E = -3214.29 N/C with direction radially in.
Explanation:
From Gauss' Law, the Electric field for any spherically symmetric charge or charge distribution is the same as the point charge formula. Thus;
E = kQ/r²
where;
Q is the net charge within the distance r.
We are given the charge Q = 15-nC and
spherical shell of radius 10cm
A) The distance r = 2.2 cm = 0.022 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²
E = 278925.62 N/C
This will be radially out ,since the net charge is positive.
B) The distance r = 5.6 cm = 0.056 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²
E = 43048.47 N/C
This will be radially out ,since the net charge is positive.
C) The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Q = 15 nC - 22 nC
Q = -7 nC = -7 x 10^(-9) C
and;
E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²
E = -3214.29 N/C
This will be radially in, since the net charge is negative. You can indicate this with a negative answer.
A) When The distance r is = 2.2 cm = 0.022 m is between the surface and also the point charge, also that so only the point charge lies within this distance and also Q = 15 NC = 15 x 10^(-9) C
Then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²Then E = 278925.62 N/CThen This will be radially out since the net charge is positive.
B) When The distance r = 5.6 cm = 0.056 m is between the surface and also the point charge, so only the point charge lies within this distance and also Q = 15 nC = 15 x 10^(-9) C
then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²Then E = 43048.47 N/CAfter that This will be radially out since the net charge is positive.
C) Then when The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Then Q = 15 nC - 22 nCAfter that Q = -7 nC = -7 x 10^(-9) CWhen E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²Then E = -3214.29 N/C Thus, This will be radially in, since the net charge is negative.Find out more information about magnitude here:
https://brainly.com/question/13502329
A projectile is fired from ground level with an initial speed of 55.6 m/s at an angle of 41.2° above the horizontal. (a) Determine the time necessary for the projectile to reach its maximum height. (b) Determine the maximum height reached by the projectile. (c) Determine the horizontal and vertical components of the velocity vector at the maximum height. (d) Determine the horizontal and vertical components of the acceleration vector at the maximum heigh
Answer:
(a) t = 3.74 s
(b) H = 136.86 m
(c) Vₓ = 41.83 m/s, Vy = 0 m/s
(d) ax = 0 m/s², ay = 9.8 m/s²
Explanation:
(a)
Time to reach maximum height by the projectile is given as:
t = V₀ Sinθ/g
where,
V₀ = Launching Speed = 55.6 m/s
Angle with Horizontal = θ = 41.2°
g = 9.8 m/s²
Therefore,
t = (55.6 m/s)(Sin 41.2°)/(9.8 m/s²)
t = 3.74 s
(b)
Maximum height reached by projectile is:
H = V₀² Sin²θ/g
H = (55.6 m/s)² (Sin²41.2°)/(9.8 m/s²)
H = 136.86 m
(c)
Neglecting the air resistance, the horizontal component of velocity remains constant. This component can be evaluated by the formula:
Vₓ = V₀ₓ = V₀ Cos θ
Vₓ = (55.6 m/s)(Cos 41.2°)
Vₓ = 41.83 m/s
Since, the projectile stops momentarily in vertical direction at the highest point. Therefore, the vertical component of velocity will be zero at the highest point.
Vy = 0 m/s
(d)
Since, the horizontal component of velocity is uniform. Thus there is no acceleration in horizontal direction.
ax = 0 m/s²
The vertical component of acceleration is always equal to the acceleration due to gravity during projectile motion:
ay = 9.8 m/s²
A population _____ follows a period of
Answer:
a population increase
Explanation:
During the 20th century, the world population increased from 1.65 billion to 6 billion. In 1970, the world's population was half that of today. In less than 15 years, 47% of the population will live in areas already under heavy water stress. In Africa, between 75 and 250 million people will face growing shortages in 2020 due to climate change. The scarcity of some arid and semi-arid regions will have a decisive impact on migration.
An object is thrown vertically and has an upward velocity of 18 m/s when it reaches one fourth of its maximum height above its launch point. What is the initial (launch) speed of the object
Answer:
v = 25.45 m/s
Explanation:
In order to calculate the initial speed of the object, you take into account the formula for the maximum height reaches by the object. Such a formula is given by:
[tex]h_{max}=\frac{v_o^2}{g}[/tex] (1)
vo: initial speed of the object = 18 m/s
g: gravitational acceleration = 9.8 m/s²
Furthermore you use the following formula for the final speed of the object:
[tex]v^2=v_o^2-2gh[/tex] (2)
h: height
You know that the speed of the object is 18m/s when it reaches one fourth of the maximum height. You use this information, and you replace the equation (1) in to the equation (2), as follow:
[tex]v^2=v_o^2-2g(\frac{h_{max}}{4})=v_o^2-\frac{1}{2}g(\frac{v_o^2}{g})\\\\v^2=v_o^2-\frac{1}{2}v_o^2=\frac{1}{2}v_o^2[/tex]
Then, you solve the previous result for vo:
[tex]v_o=\sqrt{2}v=\sqrt{2}(18m/s)=25.45\frac{m}{s}[/tex]
The initial speed of the object was 25.45 m/s
A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.
Answer:
4.93 m
Explanation:
According to the question, the computation of the height is shown below:
But before that first we need to find out the speed which is shown below:
As we know that
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]Speed = \frac{5}{0.504}[/tex]
= 9.92 m/s
Now
[tex]v^2 - u^2 = 2\times g\times h[/tex]
[tex]9.92^2 = 2\times 9.98 \times h[/tex]
98.4064 = 19.96 × height
So, the height is 4.93 m
We simply applied the above formulas so that the height i.e H could arrive
In a 2 dimensional Cartesian system, the x-component of a vector is known, and the angle between vector and x-axis is known. Which operation is used to calculate the magnitude of the vector? (taken with respect to the x-component)
a. dividing by cosine
b. dividing by sine
c. multiplying by cosine
d. multiplying by sine
Answer:
The correct answer is a
Explanation:
The cosine function is
cos θ = ca / H
done ca is the adjacent leg (x-axis) and H is the hypotenuse (vector module)
we clear
H = ca / cos θ
therefore, to find the magnitude of the vector, the cathete is divided into the cosine.
The correct answer is a
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
Complete Question
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
I = 1.2 A at time 5 secs.
Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.
Answer:
The charge is [tex]Q =2.094 C[/tex]
Explanation:
From the question we are told that
The diameter of the wire is [tex]d = 0.205cm = 0.00205 \ m[/tex]
The radius of the wire is [tex]r = \frac{0.00205}{2} = 0.001025 \ m[/tex]
The resistivity of aluminum is [tex]2.75*10^{-8} \ ohm-meters.[/tex]
The electric field change is mathematically defied as
[tex]E (t) = 0.0004t^2 - 0.0001 +0.0004[/tex]
Generally the charge is mathematically represented as
[tex]Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt[/tex]
Where A is the area which is mathematically represented as
[tex]A = \pi r^2 = (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2[/tex]
So
[tex]\frac{A}{\rho} = \frac{3.3 *10^{-6}}{2.75 *10^{-8}} = 120.03 \ m / \Omega[/tex]
Therefore
[tex]Q = 120 \int\limits^{t}_{0} { E(t) } \, dt[/tex]
substituting values
[tex]Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt[/tex]
[tex]Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.[/tex]
From the question we are told that t = 5 sec
[tex]Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.[/tex]
[tex]Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }[/tex]
[tex]Q =2.094 C[/tex]
The charge (Q) passing through a cross-section of the conductor between time 0 seconds and time 5 seconds is 2.094 Coulomb.
Given the following data:
Diameter of wire = 0.205 centimeters.Resistivity of aluminum = [tex]2.75\times 10^{-8}[/tex] Ohm-meters.[tex]E(t)=0.0004t^2-0.0001t+0.0004[/tex] Newton per coulomb.Conversion:
Diameter of wire = 0.205 cm to m = 0.00205 meter.
Radius = [tex]\frac{Diameter}{2} =\frac{0.00205}{2} =0.001025\;meter[/tex]
To determine the charge (Q) passing through a cross-section of the conductor between time 0 seconds and time 5 seconds, we would apply Gauss's law in an electric field for a surface charge:
First of all, we would find the area of the wire.
[tex]Area = \pi r^2\\\\Area = 3.142 \times 0.001025^2\\\\Area = 3.3 \times 10^{-6}\;m^2[/tex]
Mathematically, Gauss's law in an electric field for a surface charge is given by the formula:
[tex]Q = \int\limits^t_0 {\frac{A}{\rho } E(t)} \, dt[/tex]
Where:
A is the area of a conductor.[tex]\rho[/tex] is the resistivity of a conductor.t is the time.E is the electric field.Substituting the given parameters into the formula, we have;
[tex]Q= \int\limits^t_0 {\frac{3.3 \times 10^{-6}}{2.75\times 10^{-8} } (0.0004t^2-0.0001t+0.0004)} \, dt\\\\Q=120\int\limits^t_0 1{ (0.0004t^2-0.0001t+0.0004)} \, dt[/tex]
[tex]Q=120(\frac{0.0004t^3}{3} -\frac{0.0001t^2}{2} +0.0004t |\left{5} \atop {0} \right[/tex]
When t = 5 seconds:
[tex]Q=120(\frac{0.0004[5]^3}{3} -\frac{0.0001[5]^2}{2} +0.0004[5])\\\\Q=120(\frac{0.03}{3} -\frac{0.0025}{2} +0.002)\\\\Q=120(0.0167-0.00125+0.002)\\\\Q=120(0.01745)[/tex]
Q = 2.094 Coulomb.
Find more information: https://brainly.com/question/18214726
An underwater diver sees the sun at an apparent angle of 45.00 from the vertical. How far is the sun above the horizon? [n in water=1.333
Answer:
19.872 degrees
Explanation:
Mathematically;
Using Snell’s law
n1 sin A = n2 sinB
Where ;
n1 = refractive index in air = 1
n2 is refractive index in water = 1.33
A = ?
B = 45
Substituting the values in the equation;
1 sin A = 1.33 sin45
Sin A = 1.33 sin 45
A = arc sin (1.33 sin 45)
A = 70.12
Thus, the actual direction of the Sun with respect to the horizon = 90-A = 19.872 degrees
the part of the brain stem called the has been shown to related to arousal in lab animals. when this part is stimulated the animal is awake when it is severed cut the animal goes into coma
Answer:
Its called PSY
Explanation: I so do not know why they named it this way but, hope i helped.
Volume of an block is 5 cm3. If the density of the block is 250 g/cm3, what is the mass of the block ?
Answer:
The mass of the block is 1250g.
Explanation:
Given that the formula for density is ρ = mass/volume. Then you have to substitute the values into the formula :
[tex]ρ = \frac{mass}{volume} [/tex]
Let density = 250,
Let volume = 5,
[tex]250 = \frac{m}{5} [/tex]
[tex]m = 250 \times 5[/tex]
[tex]m = 1250g[/tex]
A ball is projected upward at time t= 0.0 s, from a point on a roof 90 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 36.2 m/s if air resistance is negligible. The time when the ball strikes the ground is closest to:____________A. 9.0 sB. 9.4 sC. 9.7 sD. 8.7 sE. 10 s
Answer:
B. 9.4 s
Explanation:
In order to calculate the total time taken by the ball to hit the ground, we first analyze the upward motion. We will use subscript 1 for upward motion. Now, using 1st equation of motion:
Vf₁ = Vi₁ + gt₁
where,
Vf, = Final Velocity in upward motion = 0 m/s (ball stops at highest point)
Vi = Initial Velocity in upward motion = 36.2 m/s
g = - 9.8 m/s² (negative due to upward motion)
t₁ = Time taken in upward motion = ?
Therefore,
0 m/s = 36.2 m/s + (-9.8 m/s²)(t₁)
t₁ = (36.2 m/s)/(9.8 m/s²)
t₁ = 3.7 s
Now, using 2nd equation of motion:
h₁ = (Vi₁)(t₁) + (0.5)(g)(t₁)²
where,
h₁ = distance from top of building to highest point ball reaches = ?
Therefore,
h₁ = (36.2 m/s)(3.7 s) + (0.5)(-9.8 m/s²)(3.7 s)²
h₁ = 133.58 - 66.86 m
h₁ = 66.72 m
No, considering downward motion and using subscript 2, for it.
Using 2nd equation of motion:
h₂ = (Vi₂)(t₂) + (0.5)(g)(t₂)²
where,
h₂ = height of the highest point from ground = h₁ + height of building
h₂ = 66.72 m + 90 m = 156.72 m
Vi₂ = Initial Speed during downward motion = 0 m/s (ball stops for a moment at highest point)
t₂ = Time Taken in downward motion = ?
g = 9.8 m/s²
Therefore,
156.72 m = (0 m/s)(t₂) + (0.5)(9.8 m/s²)(t₂)²
t₂² = (156.72 m)/(4.9 m/s²)
t₂ = √31.98 s²
t₂ = 5.7 s
Now, the total time taken by ball to reach the ground is"
Total Time = T = t₁ + t₂
T = 3.7 s + 5.7 s
T = 9.4 s
Therefore, the correct answer is:
B. 9.4 s
Blocks of mass 10, 30, and 90 kg are lined up from left to right in that order on a frictionless surface so each block is touching the next one. A rightward-pointing force of magnitude 32 N is applied to the left-most block. 1) What is the magnitude of the force that the left block exerts on the middle one
Answer:
32N
Explanation:
The Left force exerts an opposite horizontal force of 32N on the middle object
For the parallel plates mentioned above, the DC power supply is set to 31.5 Volts and the plate on the right is at x = 14 cm. What is the magnitude of the electric field at a point on the x-axis where x = 7.0 cm? Answer with a number in the format ### in Newtons per Coulombs.
Note: The complete question is attached as a file to this solution. The parallel plate mentioned can be seen in this picture attached.
Answer:
E = 225 N/C
Explanation:
Note: At any point on the parallel plates of a capacitor, the electric field is uniform and equal.
Therefore, Electric field at x = 14 cm equals the electric field at x = 7 cm
V(x) = 31.5 Volts
x = 14 cm = 0.14 m
The magnitude of the electric field at any point between the parallel plate of the capacitor is given by the equation:
E = V(x)/d
E(x = 0.14) = 31.5/0.14
E(x=0.14) = 225 N/C
E(x=0.14) = E(x=0.07) = 225 N/C
A worker pushes on a crate that experiences a net force of 45.0 N. If it accelerates at 0.500 m/s2 what is the weight?
Answer:
882 N
Explanation:
F = ma
45.0 N = m (0.500 m/s²)
m = 90.0 kg
mg = 882 N
A 330-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,110 A. If the conductor is copper with a free charge density of 8.50 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 107 for the number of seconds in a year.)
Answer:
t = 402 years
Explanation:
To find the number of year that electrons take in crossing the complete transmission line, you first calculate the drift speed of the electrons. Then, you use the following formula for the current in a wire:
[tex]I=nqv_dA[/tex] (1)
n: number of mobile charge carrier per volume = 8.50*10^28 e/m^3
q: charge of the electron = 1.6*10^-19 C
vd: drift velocity of electron in the metal = ?
A: cross sectional area of the wire = π r^2 = π (0.02m/2)^2 = 3.1415*10^-4 m^2
I: current in the wire = 1110 A
You solve the equation (1) for vd:
[tex]v_d=\frac{I}{nqA}=\frac{110A}{(8.50*10^{28}m^{-3})(1.6*10^{-19}C)(3.1415*10^{-4}m^2)}\\\\v_d=2.59*10^{-4}m/s[/tex]
Next, you calculate the time by using the information about the length of the line transmission:
[tex]x=v_dt\\\\x=330km=330000m\\\\t=\frac{x}{v_d}=\frac{330000m}{2.59*10^{-4}m/s}=1,270,184,865s\\\\1,270,184,865s*\frac{1\ year}{3,156,107}=402.45\ years[/tex]
hence, the electrons will take aproximately 402 years in crossing the line of transmission
where would you expect to find vesicles of neurotransmitters
A. Synaptic gap
B. postsynaptic dendrites
C. Channels in the postsynaptic
D. Presynaptic terminal button
Answer:
D. Presynaptic terminal button
explanation:
Terminal Buttons are small knobs at the end of an axon that release chemicals called neurotransmitters. The terminal buttons form the Presynaptic Neuron
hope this helped!
2. If rain is falling vertically downward, and you are running for shelter, should you hold your umbrella
vertically, tilted forward, or tilted backward to keep the driest? Please explain.
Answer:
Tilted forward to keep the driest.
Explanation:
The rain is falling vertically so there is no wind. In these circumstances the umbrella should be tilted vertically forward.
The situation is the same as if you would stand still and the rain would come under an angle from the front.
Find the displacement of a simple harmonic wave of amplitude 6.44 m at t = 0.71 s. Assume that the wave number is 2.34 m-1, the angular frequency is 2.88 rad/s, and that the wave is propagating in the +x direction at x = 1.21 m.
A) 4.55 m.
B) 1.05 m.
C) 3.54 m.
D) 2.25 m.
Answer:
Letter A. [tex]y=4.55 m[/tex]
Explanation:
Let's use the wave equation:
[tex]y=Asin(kx-\omega t)[/tex]
A is the amplitude (A=6.44 m)t is the time (t=0.71 s)k is the wave number (k=2.34 1/m)ω is the angular frequency (ω=2.88 rad/s)x is the propagation of the x direction (x=1.21 m)Therefore the displacement y will be:
[tex]y=6.44*sin(2.34*1.21-2.88*0.71)[/tex]
[tex]y=4.55 m[/tex]
The answer is letter A.
I hope it helps you!
Answer:
Explanation:
Find the displacement of a simple harmonic wave of amplitude 6.44 m at t = 0.71 s. Assume that the wave number is 2.34 m-1, the angular frequency is 2.88 rad/s, and that the wave is propagating in the +x direction at x = 1.21 m.
Amplitude (A) of the simple harmonic wave = 6.44 m
wave number (k) of the given wave = 2.34 m-1
Angular frequency (ω) of the given wave = 2.88 rad/s
Displacement x = 1.21 m and time t = 0.71 s
Then the general equation for the displacement of the given simple harmonic wave at given x and time t is given by
y = Asin(kx - ωt)
= (6.44 m)sin[(2.34 m-1)(1.21 m) - (2.88 rad/s)(0.71 s)]
Y=6.44sin(0.7866 rad)
0.7866rad*(180 degrees/pi rad) =45.1
Y=6.44sin(45.1)
Y=4.55m
An 89.2-kg person with a density 1025 kg/m3 stands on a scale while completely submerged in water. What does the scale read?
Answer:
89.11kg
Explanation:
Note an object weighs less when in a fluid and the weight of the volume of the fluid displaced is known as the upthrust.
Now, the person is going to displace the volume 89/1025 =0.087m3 { from density D = mass(M)/volume(V)}
The weight of the fluid displaced is the density of the fluid × volume of fluid displaced.
The weight of the fluid=0.087m3× 1kg/me = 0.087kg
Now the weight of the fluid displaced is referred to as the upthrust.
Now the real weight - the apparent weight = the upthrust.
Hence the apparent weight = real weight - upthrust
Apparent weight = 89.2-0.087 = 89.11kg
The rate of heat conduction out of a window on a winter day is rapid enough to chill the air next to it. To see just how rapidly windows conduct heat, calculate the rate of conduction in watts through a 2.82 m2 window that is 0.675 cm thick if the temperatures of the inner and outer surfaces are 5.00°C and −10.0°C, respectively. This rapid rate will not be maintained — the inner surface will cool, and frost may even form. The thermal conductivity of glass is 0.84 J/(s · m · °C).
Answer:
Q = - 5264 W = - 5.26 KW
Here, negative sign indicates the outflow of heat
Explanation:
Fourier's Law of heat conduction, gives the following formula:
Q = - KAΔT/t
where,
Q = Rate of Heat Conduction out of window = ?
K = Thermal Conductivity of Glass = 0.84 W/m.°C
A =Surface Area of window = 2.82 m²
ΔT = Difference in Temperature of both sides of surface
ΔT = Inner Surface Temperature - Outer Surface Temperature= 5°C - (- 10°C)
ΔT = 15°C
t = thickness of window = 0.675 cm = 0.00675 m
Therefore,
Q = - (0.84 W/m.°C)(2.82 m²)(15°C)/0.00675 m
Q = - 5264 W = - 5.26 KW
Here, negative sign indicates the outflow of heat.
Proposed Exercise - Mass Center of a Composite Body Determine the coordinates (x, y) of the center of mass of the body illustrated in the picture below
Answer:
x = 3.76 cm
y = 3.76 cm
Explanation:
This composite shape can be modeled as a square (7.2 cm × 7.2 cm) minus a quarter circle in the lower left corner (3.6 cm radius) and a right triangle in the upper right corner (3.6 cm × 3.6 cm).
The centroid of a square (or any rectangle) is at x = b/2 and y = h/2.
The centroid of a quarter circle is at x = y = 4r/(3π).
The centroid of a right triangle is at x = b/3 and y = h/3.
Build a table listing each shape, the coordinates of its centroid (x and y), and its area (A). Use negative areas for the shapes that are being subtracted.
Next, multiply each coordinate by the area (Ax and Ay), sum the results (∑Ax and ∑Ay), then divide by the total area (∑Ax / ∑A and ∑Ay / ∑A). The result will be the x and y coordinates of the center of mass.
See attached image.
An alpha particle has a charge of +2e and a mass of 6.64 x 10-27 kg. It is accelerated from rest through a potential difference of 1.2 x 106 V and then enters a uniform magnetic field whose strength is 2.2 T. The alpha particle moves perpendicular to the field. Calculate (a) the speed of the alpha particle, (b) the magnitude of the magnetic force exerted on it, and (c) the radius of its circular path.
Answer:
a) v = 1.075*10^7 m/s
b) FB = 7.57*10^-12 N
c) r = 10.1 cm
Explanation:
(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:
[tex]K=qV[/tex] (1)
q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C
V: potential difference = 1.2*10^6 V
You replace the values of the parameters in the equation (1):
[tex]K=(3.2*10^{-19}C)(1.2*10^6V)=3.84*10^{-13}J[/tex]
The kinetic energy of the particle is also:
[tex]K=\frac{1}{2}mv^2[/tex] (2)
m: mass of the particle = 6.64*10^⁻27 kg
You solve the last equation for v:
[tex]v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(3.84*10^{-13}J)}{6.64*10^{-27}kg}}\\\\v=1.075*10^7\frac{m}{s}[/tex]
the sped of the alpha particle is 1.075*10^6 m/s
b) The magnetic force on the particle is given by:
[tex]|F_B|=qvBsin(\theta)[/tex]
B: magnitude of the magnetic field = 2.2 T
The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1
[tex]|F_B|=(3.2*10^{-19}C)(1.075*10^6m/s)(2.2T)=7.57*10^{-12}N[/tex]
the force exerted by the magnetic field on the particle is 7.57*10^-12 N
c) The particle describes a circumference with a radius given by:
[tex]r=\frac{mv}{qB}=\frac{(6.64*10^{-27}kg)(1.075*10^7m/s)}{(3.2*10^{-19}C)(2.2T)}\\\\r=0.101m=10.1cm[/tex]
the radius of the trajectory of the electron is 10.1 cm
The speed, magnetic force and radius are respectively; 10.75 * 10⁶ m/s; 7.57 * 10⁻¹² N; 0.101 m
What is the Magnetic force?
A) We know that the formula for kinetic energy can be expressed as;
K = qV
where;
q is charge of the particle = 2e = 2(1.6 × 10⁻¹⁹ C) = 3.2 × 10⁻¹⁹ C
V is potential difference = 1.2 × 10⁶ V
K = 3.2 × 10⁻¹⁹ * 1.2 × 10⁶
K = 3.84 × 10⁻¹³ J
Also, formula for kinetic energy is;
K = ¹/₂mv²
where v is speed
Thus;
v = √(2K/m)
v = √(2 * 3.84 × 10⁻¹³)/(6.64 * 10⁻²⁷)
v = 10.75 * 10⁶ m/s
B) The magnetic force is given by the formula;
F_b = qvB
F_b = (3.2 × 10⁻¹⁹ * 10.75 * 10⁶ * 2.2)
F_b = 7.57 * 10⁻¹² N
C) The formula to find the radius is;
r = mv/qB
r = (6.64 * 10⁻²⁷ * 10.75 * 10⁶)/(1.6 × 10⁻¹⁹ * 2.2)
r = 0.101 m
Read more about magnetic field at; https://brainly.com/question/7802337