Answer:
W = 1/2 K x^2
x^2 = 2 * W / K = 2 * 49 J / (N/m) = .218 / m^2
x = .467 m
A bird travels at a speed of 14.2 m/s for 514 meters. How many seconds did it
fly?
Answer:
0.54 sec
Explanation:
Answer:
Time = 36.19 secondsExplanation:
Speed = 14.2 m/s
Distance = 514 m
Time = Distance / Speed
Time = 514 / 14.2
Time = 36.19 seconds
You are watching a s Saturday morning cartoon concerning a jungle hero called George of the Jungle. George attempts to save a friend, an ape named Ape, from a stampeding herd of wildebeests. Ape is at the base of a tall tree which has a vine attached to its top. George is in another tree holding the other end of the vine. George plans to swing down from the tree, grab Ape at the bottom of the swing, and continue up to safety on a ledge which is half of George's initial height in the tree. Assuming that Ape weights the same as George, will they successfully make it to the top of the ledge? If you believe they do, how high a ledge could they make it to? If you disagree, suggest what could be done for George to save Ape.
Answer:
I don't think so because if Ape was the same weight as george I don't
think he can hold him but maybe so let's say he could hold his own ape then Yes I think he could make it to the ledge Now I think they could make it to the ledge which was half the size.
Sorry if this sounded weird English is my 2nd language Oh and if this helped please give brainiest thank you <3
I need help with this
9.2 True/False Questions
1) Unsatisfying relationships can interfere with your well-being.
Answer:
2) One way to tell if a relationship is unhealthy is that you are unhappy.
Answer:
3) Managers at large companies are more involved in the day-to-day operations of their businesses than entrepreneurs.
Answer:
4) Being an effective member of a team depends entirely on the project's outcome.
Answer:
5) Teams are influenced by the personal qualities of the team members.
Answer:
4) Which statement about teamwork is not true?
A) Team members should not have to make personal sacrifices for the success of the team.
B) To be successful, all team members need to agree about how to achieve the goal.
C) To achieve agreement, teams must be able to communicate and negotiate.
D) Team members need to be ready to resolve conflicts in an open and honest way
Answer: A) Team should not have to make personal sacrifices for the success of the team.
Explanation:
need help ASAP!!!!!!!!!!!
Answer:
The equation says that due to variation in temperature is
delt T = .59 m/s / C = 16 C * .59 m/s = 9.44 m/s
So v = 332 m/s + 9.44 m/s = 341 m/s (to three significant figures)
What is respiration?
Answer:
taking in oxygen and giving out carbon dioxide is called respiration
Answer:
i think that respiratiln is when you breqth
Please help guy review question.
Answer:
66.67 km/h
Explanation:
20 + 30 = 50
50/.75 = 66.67
A 3.5 kg object gains 76 J of potential energy as it is lifted vertically. Find the new height of the object?
Answer:
1.72 m
Explanation:
Potential energy = mgh, where m is mass, g is acceleration due to gravity (9.8), and h is height
76 = (3.5)(9.8)h
76=44.1h
h=1.72335600907 ≈1.72 m
Answer:
:r
Explanation:r
Tobnbv346468this Ishmael
How would increasing the pressure of this reaction affect the equilibrium
Explanation:
c because there is element
Answer:
C. H2 and N2 would react to produce more NH3
Explanation:
A.P.E.X
hhhep faaast plssssss
Answer:
false
Explanation:
I am in need of points sorry
What is the approximate surface temperature of the 'White Dwarfs'?.
2,500-5,000 K
5,000-10,000
10,000-15,000 K
15,000 K-35,000 K
Answer:
5,000-10,000 K
Explanation:
make me your brainlist pls
If this is the stationary wall isn’t the ANSWER that there is no work being done? If not what is the correct answer and why? Help!!
Answer:
no work is done cause there is no movement of the wall
Why is it imperative that the collision takes place in a plane parallel to the plane containing the camera lens
Answer:
It is imperative that the collision takes place in a plane parallel to the plane containing the camera lens so that parallax does not affects the recording of camera.
Explanation:
It is imperative that the collision takes place in a plane parallel to the plane containing the camera lens so that parallax does not affect the recording of the camera. There may occur an error in video analysis if the camera is tilted at an angle in relation to the collision plane.
(The role of the lens is to take light to a fixed focal point.)
Two ice skaters, with masses of 50 kg and 75 kg , are at the center of a 30 m -diameter circular rink. The skaters push off against each other and glide to opposite edges of the rink. Part A If the heavier skater reaches the edge in 30 s , how long does the lighter skater take to reach the edge
Answer:
t = 20 s
Explanation:
Assuming no other forces acting on the skaters when they push off against each other, and that we can neglect friction, total momentum must be conserved.The initial momentum is just zero, because both skaters are at rest.So, when both are gliding to opposite edges of the rink, at any moment, we can write the following expression:[tex]p_{f} = m_{1} * v_{1} = m_{2} * v_{2} (1)[/tex]
where m₁ = 50 kg, m₂ = 75 kg.We know that the heavier skater reaches the edge in 30 s.Since the distance from the center to any point on the edge is just half the diameter, we can find the speed of the heavier skater as follows:[tex]v_{2} = \frac{15m}{30s} = 0.5 m/s (2)[/tex]
Replacing m₁, m₂ and v₂ in (1), we can solve for the only unknown (v₁) as follows:[tex]v_{1} = \frac{m_{2}*v_{2}}{m_{1} } = \frac{75 kg*0.5m/s}{50kg} = 0.75 m/s (3)[/tex]
Since the distance to the opposite edge from the center is the same than for the heavier skater, we can find the time needed for the lighter one to reach the edge as follows:[tex]t_{1} = \frac{15m}{0.75m/s} = 20 s (4)[/tex]A 85-W lamp is connected to 100 V. What is the resistance of the lamp?
A substance whose shape can easily change is a
A 1.65-m-long wire having a mass of 0.100 kg is fixed at both ends. The tension in the wire is maintained at 16.0 N. (a) What are the frequencies of the first three allowed modes of vibration
Answer:
Explanation:
mass per unit length ρ = .100 / 1.65 = .0606 . kg /m
length of wire L = 1.65 m
For fundamental frequency , the expression is as follows
n = [tex]\frac{1}{2L} \sqrt{\frac{T}{m} }[/tex]
L = 1.65 , T = 16 n and m = .0606
n = [tex]\frac{1}{2\times 1.65} \sqrt{\frac{16}{.0606} }[/tex]
= 4.9 /s .
This is fundamental frequency .
other mode of vibration ( first three ) will be as follows
4.9 x 2 = 9.8 /s ,
4.9 x 3 = 14.7 /s .
. Indiana Jones needs to ascend a 10-m-high building. There is a large hose filled with pressurized water hanging down from the building top. He builds a square platform and mounts four 4-cm-diameter nozzles pointing down at each corner. By connecting hose branches, a water jet with a velocity, u, can be produced from each nozzle. Jones, the platform, and the nozzles have a combined mass of 150 kg. Determine the minimum water jet velocity, u (m/s), needed to raise the system.
Answer:
u = 14 m / s
Explanation:
For this exercise let's use conservation of energy
starting point. On the floor just when u speeding out
Em₀ = K = ½ m v²
final point. When on top of the building, no speed
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ m v² = m g h
v = u
u = [tex]\sqrt{2 g h}[/tex]
u= [tex]\sqrt{2 \ 9.8 \ 10}[/tex]
u = 14 m / s
Please help me with this question. Every help is appreciated.
Answer:
Change in KE = +1.96×10^4 J while the change in ME = 0 J
One end of a meter stick is pinned to a table, so the stick can rotate freely in a plane parallel to the tabletop. Two forces, both parallel to the tabletop, are applied to the stick in such a way that the net torque is zero. The first force has a magnitude of 2.00 N and is applied perpendicular to the length of the stick at the free end. The second force has a magnitude of 6.00 N and acts at a 42.9o angle with respect to the length of the stick. Where along the stick is the 6.00-N force applied? Express this distance with respect to the end of the stick that is pinned.
Answer:
x = 0.455 L
Explanation:
For this exercise we must use the rotational equilibrium condition
Σ τ = 0
it has two forces, the first is perpendicular to the rod, so its stub is
τ₁ = F₁ L
the second force is applied with an angle, so we can use trigonometry to find its components
sin θ = F_parallel / F₂
cos θ = F_perpendicular / F₂
F_parallel = F₂ sin θ
F _perpendicular = F₂ cos θ
torque is
τ₂ = F_perpendicular x + F_parallel 0
the parallel force is on the rod therefore its distance is zero
we apply the equilibrium equation
τ₁ - τ₂ = 0
F₁ L = F₂ cos θ x
x = [tex]\frac{L}{cos \theta} \ \frac{F_1}{F_2}[/tex]
let's calculate
x = [tex]\frac{L}{cos \ 42.9} \ \frac{2.00}{6.00}[/tex]
x = 0.455 L
The augue
1) What will be number of image if the angle
between two mirroro is
a) 45
b:36
Which layer of the atmosphere is the least dense?
Question 5 options:
exosphere
thermosphere
mesosphere
troposphere
the exosphere is the least dense
Answer:
exosphere
Explanation: Just took the quiz and got an A, 100%
a 4.5 Hz wave has a wavelength of 0.8m. what is the speed
0.18 m/s
5.6m/s
5.3m/s
3.6m/s
Answer:
Explanation
2) Which of the following is not a quality of a healthy relationship?
A) respect
B) trust
C) closed communication
D) honesty
A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 20
kg. The carriage has
energy. Calculate it
Answer:
Energy in carriage (Potential energy) = 4,116 J
Explanation:
Given:
Mass of baby = 20 kg
Height = 21 m
Find:
Energy in carriage (Potential energy)
Computation:
The energy accumulated in an object as a result of its location relative to a neutral level is known as potential energy.
In carriage accumulated energy is potential energy.
Energy in carriage (Potential energy) = mgh
Energy in carriage (Potential energy) = (20)(9.8)(21)
Energy in carriage (Potential energy) = 4,116 J
no links or i will report. What is the potential energy of stretched spring, if the spring constant is 40 N/m and the elongation is 5 cm?
Answer: 0.05 J
Explanation:
List all variables before solving:
K = 40 N/m
x = 5 cm (convert to 0.05 m)
Use the equation for potential energy (PE):
PE = [tex]\frac{1}{2}[/tex] k[tex]x^{2}[/tex]
Plug in the given variables and solve:
PE = ( [tex]\frac{1}{2}[/tex] ) (40 N/m) (0.05 m)^2
The answer is 0.05 J
A dog runs 51 m west to fetch a ball and brings it back only 27 m before stopping.
The total displacement of the dog is:
An object, with mass 64 kg and speed 14 m/s relative to an observer, explodes into two pieces, one 2 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame
Answer:
K_f = 1881.6 J
Explanation:
To solve this exercise, let's start by finding the velocities of the bodies.
We define a system formed by the initial object and its parts, with this the forces during the explosion are internal and the moment is conserved
initial instant. Before the explosion
p₀ = M v₀
final instant. After the explosion
p_f = m₁ v + m₂ 0
the moeoto is preserved
p₀ = p_f
M v₀ = m₁ v
v = [tex]\frac{m_1}{M}[/tex] v₀
in the exercise they indicate that the most massive part has twice the other part
M = m₁ + m₂
M = 2m₂ + m₂ = 3 m₂
m₂ = M / 3
so the most massive part is worth
m₁ = 2 M / 3
we substitute
v = ⅔ v₀
with the speed of each element we can look for the kinetic energy
initial
K₀ = ½ M v₀²
Final
K_f = ½ m₁ v² + 0
K_f = ½ (⅔ M) (⅔ v₀)²
K_f = [tex]\frac{8}{27}[/tex] (½ M v₀²)
K_f = [tex]\frac{8}{27}[/tex] K₀
the energy added to the system is
ΔK = Kf -K₀
ΔK = (8/27 - 1) K₀
ΔK = -0.7 K₀
K_f = K₀ + ΔK
K_f = K₀ (1 -0.7)
K_f = 0.3 K₀
let's calculate
K_f = 0.3 (½ 64 14²)
K_f = 1881.6 J
In an application, Germanium is
made p-type material by adding
Indium. The rate of adding is one
indium atom
per
3 Germanium
atom. Assume donor density to be
zero and ni = 6.2 Cubic
metre at room temperature.
Determine the value
of
the
aceeptor atom density
Answer:
produce electronics
Explanation:
The uses of Germanium are recorded beneath: Germanium's principle use is to deliver strong state hardware, semiconductors and fiber optic frameworks. As a phosphor in fluorescent lights.