An aluminium pot whose thermal conductivity is 237 W/m.K has a flat, circular bottom

with diameter 15 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in

the pot through its bottom at a rate of 1400 W. If the inner surface of the bottom of the pot

is at 105 °C, determine the temperature at the outer surface of the bottom of the pot

Answers

Answer 1

Answer:

T₁ = 378.33 k = 105.33°C

Explanation:

From Fourier's Law of heat conduction, we know that:

Q = - KAΔT/t

where,

Q = Heat Transfer Rate = 1400 W

K = Thermal Conductivity of Material (Aluminum) = 237 W/m.k

A =Surface Area through which heat transfer is taking place=circular bottom

A = π(radius)² = π(0.15 m)² =  0.0707 m²

ΔT = Difference in Temperature of both sides of surface = T₂ - T₁

T₁ = Temperature of outer surface = ?

T₂ = Temperature of inner surface = 105°C + 273 = 378 k

ΔT = 388 k - T₁

t = thickness of the surface (Bottom of Pot) = 0.4 cm = 0.004 m

Therefore,

1400 W = - (237 W/m.k)(0.0707 m²)(378 k - T₁)/0.004 m

(1400 W)/(4188.14 W/k) = - (378 k - T₁)

T₁ = 0.33 k + 378 k

T₁ = 378.33 k = 105.33°C


Related Questions

Friction is a force that acts in an ___________ direction of movement.
a) similar
b) opposite
c) parallel
d) west

Answers

Answer:

the answer is opposite.

plz mark brainliest

Explanation:

A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle of 85.0 0 to the initial direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate the final velocity (magnitude and direction) of the bowling ball.

Answers

Answer:

9.05 m/s ,   -14.72°  (respect to x axis)

Explanation:

To find the final velocity of the bowling ball you take into account the conservation of the momentum for both x and y component of the total momentum. Then, you have:

[tex]p_{xi}=p_{xf}\\\\p_{yi}=p_{yf}\\\\[/tex]

[tex]m_1v_{1xi}+m_2v_{2xi}=m_1v_1cos\theta+m_2v_{2}cos\phi\\\\0=m_1v_1sin\theta-m_2v_2sin\phi[/tex]

m1: mass of the bowling ball = 5.50 kg

m2: mass of the bowling pin = 0.850 kg

v1xi: initial velocity of the bowling ball = 9.0 m/s

v2xi: initial velocity of bowling pin = 0m/s

v1: final velocity of bowling ball = ?

v2: final velocity of bowling pin = 15.0 m/s

θ: angle of the scattered bowling pin = ?

Φ: angle of the scattered bowling ball = 85.0°

Where you have used that before the bowling ball hits the pin, the y component of the total momentum is zero.

First you solve for v1cosθ in the equation for the x component of the momentum:

[tex]v_1cos\theta=\frac{m_1v_{1xi}-m_2v_2cos\phi}{m_1}\\\\v_1cos\theta=\frac{(5.50kg)(9.0m/s)-(0.850kg)(15.0m/s)cos85.0\°}{5.50kg}\\\\v_1cos\theta=8.79m/s[/tex]

and also you solve for v1sinθ in the equation for the y component of the momentum:

[tex]v_1sin\theta=\frac{(0.850kg)(15.0m/s)sin(85.0\°)}{5.50kg}\\\\v_1sin\theta=2.3m/s[/tex]

Next, you divide v1cosθ and v1sinθ:

[tex]\frac{v_1sin\theta}{v_1cos\theta}=tan\theta=\frac{2.3}{8.79}=0.26\\\\\theta=tan^{-1}(0.26)=14.72[/tex]

the direction of the bawling ball is -14.72° respect to the x axis

The final velocity of the bawling ball is:

[tex]v_1=\frac{2.3m/s}{sin\theta}=\frac{2.3}{sin(14.72\°)}=9.05\frac{m}{s}[/tex]

hence, the final velocity of the bawling ball is 9.05 m/s

Suppose your hair grows at the rate of 1/55 inch per day. Find the rate at which it grows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm, your answer suggests how rapidly atoms are assembled in this protein synthesis.

Answers

Answer:5.35nm

Explanation:

Consider that 1 inch is = 0.0254m

we have,

1m= 1x10^9 nm  

While:

0.0254m = 2.54x10^7nm  

1/55 (2.54x10^7) = 4.6181 x 10^5nm  

1 day= 24 hrs  

= (24x60) when calculating in min  

= (24x60x60) calculating in seconds we have:

= 8.64x10⁴sec  

In 8.64x10^4 seconds, the hair grows by 4.6181 x 10^5nm

Therefore, the amount by which the hair grows in 1 second  will be;

= (4.6181 x 10^5)/(8.64x10^4)  

= 5.35nm  

The rate of growth will be 5.35nm

Parallel light rays with a wavelength of 610nm fall on a single slit. On a screen 3.10m away, the distance between the first dark fringes on either side of the central maximum is 4.00mm.
What is the width of the slit?

Answers

Answer:

The width of the slit will be ".946 mm".

Explanation:

The given values are:

Wavelength = 610 × 10⁻⁹

Length, L = 3 m

As we know,

⇒  [tex]\frac{y}{L} = \frac{m(wavelength)}{a}[/tex]

On putting the estimated values, we get

⇒  [tex]\frac{2\times 10^{-3}}{3.1} = \frac{(1)(610 X 10^{-9})}{a}[/tex]

On applying cross-multiplication, we get

⇒  [tex]a=9.46\times 10^{-4}[/tex]

⇒  [tex]a = .946 mm[/tex]

Un levantador de pesas puede generar 3000 N de fuerza ¿Cuál es el peso máximo que puede levantar con una palanca que tiene un brazo de la fuerza de 2 m y un brazo de resistencia de 50 cm?

Answers

Responder: 12000N

Explicación: Usando la fórmula para encontrar la eficiencia de una máquina. Eficiencia = ventaja mecánica / relación de velocidad × 100%

Dado MA = Carga / Esfuerzo

Relación de velocidad = distancia recorrida por esfuerzo (brazo de fuerza) / distancia recorrida por carga (brazo de resistencia)

MA = Carga / 3000

VR = 2 / 0.5 VR = 4

Asumiendo que la eficiencia es 100% 100% = (Carga / 3000) / 4 × 100%

1 = (Carga / 3000) / 4

4 = Carga / 3000

Carga = 4 × 3000

Carga = 12000N

Esto significa que el peso máximo que se puede levantar es 12000N

A pendulum on a planet, where gravitational acceleration is unknown, oscillates with a time period 5 sec. If the mass is increased six times, what is the time period of the pendulum?

Answers

Explanation:

We have, a pendulum on a planet, oscillates with a time period 5 sec. The formula used to find the time period is given by :

[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]

l is length of the pendulum

g is acceleration due to gravity on which it is placed

It is clear that, the time period of pendulum is independent of the mass. Hence, if the mass is increased six times, its time period remains the same.

What is The mass of an electron

Answers

9.10938356 × 10-31 kilograms

A bicycle wheel has an initial angular velocity of 1.10 rad/s . Part A If its angular acceleration is constant and equal to 0.200 rad/s2 , what is its angular velocity at t = 2.50 s ? (Assume the acceleration and velocity have the same direction) Express your answer in radians per second. ω = nothing rads Request Answer Part B Through what angle has the wheel turned between t = 0 and t = 2.50 s ? Express your answer in radians. Δθ = nothing rad Request Answer Provide Feedback

Answers

Let [tex]\theta[/tex], [tex]\omega[/tex], and [tex]\alpha[/tex] denote the angular displacement, velocity, and acceleration of the wheel, respectively.

(A) The wheel has angular velocity at time [tex]t[/tex] according to

[tex]\omega=\omega_0+\alpha t[/tex]

so that after 2.50 s, the wheel will have attained an angular velocity of

[tex]\omega=1.10\dfrac{\rm rad}{\rm s}+\left(0.200\dfrac{\rm rad}{\mathrm s^2}\right)(2.50\,\mathrm s)=\boxed{1.60\dfrac{\rm rad}{\rm s}}[/tex]

(B) The angular displacement of the wheel is given by

[tex]\theta=\theta_0+\omega_0t+\dfrac\alpha2t^2\implies\Delta\theta=\omega_0t+\dfrac\alpha2t^2[/tex]

After 2.50 s, the wheel will have turned an angle [tex]\Delta\theta[/tex] equal to

[tex]\Delta\theta=\left(1.10\dfrac{\rm rad}{\rm s}\right)(2.50\,\mathrm s)+\dfrac12\left(0.200\dfrac{\rm ram}{\mathrm s^2}\right)(2.50\,\mathrm s)^2=\boxed{3.38\,\mathrm{rad}}[/tex]

A plastic rod of length d = 1.5 m lies along the x-axis with its midpoint at the origin. The rod carries a uniform linear charge density λ = 2.5 nC/m. The point P is located on the positive y-axis at a distance y0 = 15 cm from the origin. The z-axis points out of the screen. Integrate your correct choice in part (b) over the length of the rod and choose the correct expression for the y-component of the electric field at point P.

Answers

Answer:

Explanation:

Let the plastic rod extends from - L to + L .

consider a small length of dx on the rod on the positive x axis at distance x . charge on it =  λ dx where  λ is linear charge density .

It will create a field at point P on y -axis . Distance of point P

= √ x² + .15²

electric field at P due to small charged length

dE = k λ dx x  / (x² + .15² )

Its component along Y - axis

= dE cosθ where θ is angle between direction of field dE and y axis

= dE x .15 / √ x² + .15²

=  k λ dx  .15 / (x² + .15² )³/²

If we consider the same strip along the x axis at the same position  on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L

E = ∫  k λ  .15  / (x² + .15² )³/² dx

=  k λ  x L / .15 √( L² / 4 + .15² )

b) The length of the rod:

[tex]E = \int\limits dx . k \lambda .15 / (x^2 + .15^2 )^{1/2} dx\\\\E= \frac{k \lambda * L}{0.15} \sqrt{( L^2 / 4 + .15^2 )[/tex]

Given:

d = 1.5 mλ = 2.5 nC/m

Let the plastic rod extends from - L to + L .Consider a small length of dx on the rod on the positive x axis at distance x . charge on it = λ dx where λ is linear charge density .It will create a field at point P on y -axis.

Distance of point P =[tex]\sqrt{x^2 + 0.15^2}[/tex]

How to calculate Electric Field?

E.F at P due to small charged length[tex]dE = \frac{ k \lambda x.dx}{(x^2 + .15^2 )}[/tex]

Its component along Y - axis = dE cosθ where θ is angle between direction of field dE and y axis

[tex]= \frac{dE x .15 }{\sqrt{x^2 + .15^2} }\\\\= \frac{k \lambda dx .15}{(x^2 + .15^2 )^{1/2}}[/tex]

If we consider the same strip along the x axis at the same position on negative x axis , same result will be found . We can say that the component of field in perpendicular to y axis will cancel out each other.

Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L

[tex]E = \int\limits dx . k \lambda .15 / (x^2 + .15^2 )^{1/2} dx\\\\E= \frac{k \lambda * L}{0.15} \sqrt{( L^2 / 4 + .15^2 )}[/tex]

Find more information about Electric field here:

brainly.com/question/14372859

A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to: A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to:__________.
a) 19 s
b) 17 s
c) 21 s
d) 23 s
e) 15 s

Answers

Starting from rest, the wheel attains an angular velocity of 25 rad/s in a matter of 10 s, which means the angular acceleration [tex]\alpha[/tex] is

[tex]25\dfrac{\rm rad}{\rm s}=\alpha(10\,\mathrm s)\implies\alpha=2.5\dfrac{\rm rad}{\mathrm s^2}[/tex]

For the next 37 s, the wheel maintains a constant angular velocity of 25 rad/s, meaning the angular acceleration is zero for the duration. After this time, the wheel undergoes an angular acceleration of -1.5 rad/s/s until it stops, which would take time [tex]t[/tex],

[tex]0\dfrac{\rm rad}{\rm s}=25\dfrac{\rm rad}{\rm s}+\left(-1.5\dfrac{\rm rad}{\mathrm s^2}\right)t\implies t=16.666\ldots\,\mathrm s[/tex]

which makes B, approximately 17 s, the correct answer.

The time interval of angular deceleration is 16.667 seconds, whose closest integer is 17 seconds. (B. 17 s.)

Let suppose that the grinding wheel has uniform Acceleration and Deceleration. In this question we need to need to calculate the time taken by the grinding wheel to stop, which is found by means of the following Kinematic formula:

[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex] (1)

Where:

[tex]\omega_{o}[/tex] - Initial angular velocity, in radians per second.

[tex]\omega[/tex] - Final angular velocity, in radians per second.

[tex]\alpha[/tex] - Angular acceleration, in radians per square second.

[tex]t[/tex] - Time, in seconds.

If we know that [tex]\omega = 0\,\frac{rad}{s}[/tex], [tex]\omega_{o} = 25\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.5\,\frac{rad}{s^{2}}[/tex], then the time taken by the grinding wheel to stop:

[tex]t = \frac{0\,\frac{rad}{s}-25\,\frac{rad}{s}}{-1.5\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 16.667\,s[/tex]

The time interval of angular deceleration is 16.667 seconds. (Answer: B)

Please this related question: https://brainly.com/question/10708862

An industrial flywheel (a solid disk) of mass 10.0 kg and radius 17.3 cm is rotating at an angular speed of 22.0 rad/s. Upon being switched to a slower setting, the flywheel uniformly slows down to 13.5 rad/s after rotating through an angle of 13.8 radians. Calculate the angular acceleration of the flywheel in the process of slowing down

Answers

Answer:

Explanation:

During slowing down , initial angular velocity ω₁ = 22 rad /s

final angular velocity ω₂ = 13.5 rad /s

using the law's of motion formula for rotation

ω₂² =  ω₁² + 2 αθ  , α is angular acceleration and θ is angle in radian rotated during this period

13.5² = 22² - 2xα x 13.8

2xα x 13.8 = 484 - 182.25

α  =  10.93 rad / s²

A train starts from rest and accelerates uniformly, until it has traveled 5.6 km and acquired a velocity of 42 m/s. The train then moves at a constant velocity of 42 m/s for 420 s. The train then slows down uniformly at 0.065 m/s^2, until it is brought to a halt. What is the acceleration during the first 5.6 km of travel?

Answers

Answer:

0.1575 m/s^2

Explanation:

Solution:-

- Acceleration ( a ) is expressed as the rate of change of velocity ( v ).

- We are given that the trains starts from rest i.e the initial velocity ( vo ) is equal to 0. Then the train travels from reference point ( so = 0 ) to ( sf = 5.6 km ) from the reference.

- During the travel the train accelerated uniformly to a speed of ( vf =42 m/s ).

- We will employ the use of 3rd kinematic equation of motion valid for constant acceleration ( a ) as follows:

                         [tex]v_f^2 = v_i^2 + 2*a*( s_f - s_o )[/tex]

- We will plug in the given parameters in the equation of motion given above:

                         [tex]42^2 = 0^2 + 2*a* ( 5600 - 0 )\\\\1764 = 11,200*a\\\\a = \frac{1,764}{11,200} \\\\a = 0.1575 \frac{m}{s^2}[/tex]

Answer: the acceleration during the first 5.6 km of travel is 0.1575 m / s^2

Which formation is one feature of karst topography?


Answers

Sinkholes formation is one feature of karst topography. The top of a cave falls if it develops large enough and its top extends near enough to the surface.

What is karst topography?

Karst topography is a type of natural environment formed mostly by chemical weathering by water, resulting in caves, sinkholes, cliffs, and steep-sided hills known as towers.

The top of a cave falls if it develops large enough and its top extends near enough to the surface. Sinkholes are formed as a result of this, and they are one of the most distinguishing aspects of karst terrain.

When water absorbs carbon dioxide from the atmosphere and ground, it becomes carbonic acid.

Hence, sinkholes  formation is one feature of karst topography

To learn more about the karst topography, refer to the link;

https://brainly.com/question/1167881

#SPJ2

Answer: A) Caves

Explanation:

A force of 640 newtons stretches a spring 4 meters. A mass of 40 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 6 m/s. Find the equation of motion.

Answers

Bhbbv h Gucci Janice)6225

Positive charge Q is placed on a conducting spherical shell with inner radius R1 and outer radius R2. A particle with charge q is placed at the center of the cavity. The net charge on the inner surface of the conducting shell is

Answers

Answer: in this question, the only charge in the cavity is Q. Inside the conducting spherical shell, the electric field is zero.

While outside the shell, the electric field is given by: k(q + Q)/r²

Where;

K= is a constant which is given as, 8.99 x 10^9 N m² / C².

Q= source charge which creates the electric field

q= is the test charge which is used to measure the strength of the electric field at a given location.

r= is the radius

Explanation: Inside the conducting spherical shell, the electric field is zero since the Electric field vanishes everywhere inside the volume of a good conductor.

For the RC circuit and the RL circuit, assume that the period of the source square wave is much larger than the time constant for each. Make a sketch of vR(t) as a function of t for each of the circuits?

Answers

Answer with Explanation:

Concepts and reason

The concept to solve this problem is that if a capacitor is connected in a RC circuit then it allows the flow of charge through circuit only till it gets fully charged. Once the capacitor is charged it will not allow any charge or current to flow.

Opposite is the case with inductor in the RL circuit. According to Faraday's law an inductor develops an emf to oppose the voltage applied but once the flux change stops then the inductor behaves just like a normal wire as if no inductor is there.

In attached figure, resistor is connected in series to the capacitor.

As we considered [tex]V_{C}[/tex] the voltage across the capacitor and [tex]V_{s}[/tex] the voltage across the source.

Voltage across a resistor In RC circuit.

[tex]V_{R}=V_S\left ( e^{-\frac{t}{RC}} \right )[/tex]

Voltage across a resistor In RL circuit.

[tex]V_{R}=V_S\left (1- e^{-\frac{Rt}{L}} \right )[/tex]

The sketch of [tex]\mathbf{v_R(t)}[/tex] as a function of t for each of the circuits can be seen in the diagram attached below.

For the Pre-Laboratory exercise, based on the assumption that the RC circuit has a capacitor and a sensing resistor while the RL circuit has a sensing resistor and an inductor.

The input voltage for both circuits is regarded as the square wave and if the square wave is much larger than the time constant for each.

Therefore, we can conclude that the below diagram shows an appropriate sketch of  [tex]\mathbf{v_R(t)}[/tex] as a function of t for each of the circuits.

Learn more about RC circuits and RL circuits here:

https://brainly.com/question/15595203

A parallel-plate capacitor in air has a plate separation of 1.30 cm and a plate area of 25.0 cm2. The plates are charged to a potential difference of 255 V and dis-connected from the source. The capacitor is then immersed in distilled water. Determine a) the charge on the plates before and after immersion.b) the capacitance and potential difference after immersion.c) the change in energy of the capacitor.

Answers

Answer:

Explanation:

capacitance of air capacitor

C = ε₀ A /  d

ε₀ is permittivity of medium , A is plate area , d is distance between plate .

C = 8.85 x 10⁻¹² x 25 x 10⁻⁴ / 1.3 x 10⁻²

= 170.19 x 10⁻¹⁴ F .

charge on the capacitor when it is charged to  potential of 255 V

= CV , C is capacitance and V is potential

= 170.19 x 10⁻¹⁴  x 255

= 4.34 x 10⁻¹⁰ C .

After it is disconnected from the source , and it is immersed in water , charge on it remains the same .

So its charge when immersed in water will be constant at 4.34 x 10⁻¹⁰ C.

b )

When it is immersed in water its capacity increases  k times where k is dielectric constant of water which is 80 .

capacitance of capacitor in water = 80 x 170.19 x 10⁻¹⁴  F

= 13615.2  x 10⁻¹⁴ F .

= 1.36 x 10⁻¹⁰ F

potential difference = charge / capacitance

= 4.34 x 10⁻¹⁰ / 1.36 x 10⁻¹⁰

= 3.2 V

c )

Energy of capacitor = 1/2 C V²

Initial energy = 1/2 x 170.19 x 255² x 10⁻¹⁴

=  55.33 x 10⁻⁹ J

Final energy = 1/2 x 1.36 x 10⁻¹⁰ x 3.2²

= .7  x 10⁻⁹ J .

decrease of energy = 54.63 x 10⁻⁹ J .

If a metal rod is moved through magnetic field, the charged particles will feel a force, and if there is a complete circuit, a current will flow. We talk about the induced emf of the rod. The rod essentially acts like a battery, and the induced emf is the voltage of the battery. A magnetic field with a strength of 0.732 T is pointing into the page and a metal rod L=0.362 m in length is moved to the right at a speed v of 15.1m/s.

Required:
a. What is the induced emf in the rod?
b. Suppose the rod is sliding on conducting rails, and a complete circuit is formed. If the load resistance is 5.74Ω , what is the magnitude and direction (clockwise or counterclockwise) of the current flowing in the circuit?

Answers

Answer:

a.  4 V

b. 0.697 A

Explanation:

Magnetic field strength B =  0.732 T

length of rod l = 0.362 m

velocity of rod v = 15.1 m/s

a.  EMF can be calculated as

E = Blv = 0.732 x 0.362 x 15.1 = 4 V

b. If the rod is connected to a conducting rail, with resistance R = 5.74Ω

current I = V/R = 4/5.74 = 0.697 A

the current flows in a clockwise direction

Q) A particle in simple harmonic motion starts its motion from its mean position. If T be the time period, calculate the ratio of kinetic energy and potential energy of the particle at the instant when t = T/12.

Answers

t\12 and the parties are spreading ever

Explanation:

my point is that you can get sick if

you sont wash your ha

nds or be

save

What’s the answer to this question?

Answers

Answer:

6 A

Explanation:

Parallel connected resistors needs to be calculated as one single resistor. To do that: [tex]\frac{1}{15}[/tex]+[tex]\frac{1}{15}[/tex]+[tex]\frac{1}{15}[/tex]=[tex]\frac{3}{15}[/tex]=[tex]R^{-1}[/tex]

[tex]\frac{3}{15} ^{-1}[/tex]= 5 Ω (total resistance)

U = R* I

[tex]\frac{U}{R}[/tex]=I

[tex]\frac{30}{5}[/tex]=6 A

Although these quantities vary from one type of cell to another, a cell can be 2.2 micrometers in diameter with a cell wall 40 nm thick. If the density (mass divided by volume) of the wall material is the same as that of pure water, what is the mass (in mg) of the cell wall, assuming the cell to be spherical and the wall to be a very thin spherical shell?

Answers

Answer:

m = 6.082 x 10⁻¹⁶ kg = 6.082 x 10⁻¹⁰ mg

Explanation:

First, we find the the surface area of the cell wall. Since, the cell is spherical in shape. Therefore, surface area of cell wall will be:

A = 4πr²

where,

A = Surface Area = ?

r = Radius of Cell = Diameter/2 = 2.2 μm/2 = 1.1 μm = 1.1 x 10⁻⁶ m

Therefore,

A = 4π(1.1 x 10⁻⁶ m)²

A = 15.2 x 10⁻¹² m²

Now, we find the volume of the cell wall. For that purpose, we use formula:

V = At

where,

V = Volume of the Cell Wall = ?

t = Thickness of Wall = 40 nm = 4 x 10⁻⁸ m

Therefore,

V = (15.2 x 10⁻¹² m²)(4 x 10⁻⁸ m)

V = 60.82 x 10⁻²⁰ m³

Now, to find mass of cell wall, we use formula:

ρ = m/V

m = ρV

where,

ρ = density of water = 1000 kg/m³

m = Mass of Wall = ?

Therefore,

m = (1000 kg/m³)(60.82 x 10⁻²⁰ m³)

m = 6.082 x 10⁻¹⁶ kg = 6.082 x 10⁻¹⁰ mg

The mass of the cell wall in mg is 6.082 × 10⁻¹⁰ mg

Since we assume the cell to be spherical and the wall to be a thin spherical shell, the volume of the cell wall V = At where

A = surface area of cell = 4πR² where R = radius of cell = 2.2 μm/2 = 1.1 × 10⁻⁶ m and t = thickness of cell wall = 40 nm = 40 × 10⁻⁹ m.Volume of cell wall

So, V = 4πR²t

Substituting the values of the variables into the equation, we have

V = 4πR²t

V = 4π(1.1 × 10⁻⁶ m)² × 40 × 10⁻⁹ m.

V = 4π(1.21 × 10⁻¹² m²) × 40 × 10⁻⁹ m.

V = 193.6π × 10⁻²¹ m³

V = 608.21 × 10⁻²¹ m³

V = 6.0821 × 10⁻¹⁹ m³

V ≅ 6.082 × 10⁻¹⁹ m³

Mass of the cell wall

We know that density of cell wall, ρ = m/v where m = mass of cell wall and V = volume of cell wall.

Making m subject of the formula, we have

m = ρV

Since we assume the density of the cell wall to be equal to that of pure water, ρ = 1000 kg/m³

So, m = ρV

m = 1000 kg/m³ × 6.082 × 10⁻¹⁹ m³

m = 6.082 × 10⁻¹⁶ kg

Converting to mg, we have

m = 6.082 × 10⁻¹⁶ kg × 10⁶ mg/kg

m = 6.082 × 10⁻¹⁰ mg

So, the mass of the cell wall in mg is 6.082 × 10⁻¹⁰ mg

Learn more about mass of cell wall here:

https://brainly.com/question/13173768

A certain type of laser emits light that has a frequency of 4.6 x 1014 Hz. The light, however, occurs as a series of short pulses, each lasting for a time of 3.1 x 10-11s. The light enters a pool of water. The frequency of the light remains the same, but the speed of light slows down to 2.3 x 108 m/s. In the water, how many wavelengths are in one pulse

Answers

Answer:

14,260

Explanation:

Relevant data provided for computing the wavelengths are in one pulse is here below:-

The number of wavelengths in Ls = [tex]4.6\times 10_1_4[/tex]

Therefore the Number of in time = Δt = [tex]3.1\times 10_-_1_1[/tex]

The number of wavelengths are in one pulse is shown below:-

[tex]Number\ of\ wavelengths = \triangle t\times f[/tex]

[tex]= 3.1\times 10_-_1_1\times 4.6\times 10_1_4[/tex]

= 14,260

Therefore for computing the number of wavelengths are in one pulse we simply applied the above formula.

b) A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected
in series in order that the same current shall be supplied from 240 V, 50 Hz mains.
Ignore the resistance of the inductor and calculate:
i. the inductance of the inductor;
ii. the impedance of the circuit;

iii. the phase difference between the current and the applied voltage.

Assume the waveform to be sinusoidal.

Answers

Answer:

i. 43.5 mH ii.  16 Ω. In phasor form Z = (8.33 + j13.66) Ω iii 58.64°

Explanation:

i. The resistance , R of the non-inductive load R = 125 V/15 A = 8.33 Ω

The reactance X of the inductor is X = 2πfL where f = frequency = 50 Hz.

So, x = 2π(50)L = 100πL Ω = 314.16L Ω

Since the current is the same when the 240 V supply is applied, then

the impedance Z = √(R² + X²) = 240 V/15 A

√(R² + X²) = 16 Ω

8.33² + X² = 16²

69.3889 + X² = 256

X² = 256 - 69.3889

X² = 186.6111

X = √186.6111

X = 13.66 Ω

Since X = 314.16L = 13.66 Ω

L = 13.66/314.16

= 0.0435 H

= 43.5 mH

ii. Since the same current is supplied in both circuits, the impedance Z of the circuit is Z = 240 V/15 A = 16 Ω.

So in phasor form Z = (8.33 + j13.66) Ω

iii. The phase difference θ between the current and voltage is  

θ = tan⁻¹X/R

= tan⁻¹(314.16L/R)

= tan⁻¹(314.16 × 0.0435 H/8.33 Ω)

= tan⁻¹(13.66/8.33)

= tan⁻¹(1.6406)

= 58.64°

A jet plane is flying at a constant altitude. At time t1=0t 1=0, it has components of velocity vx=90m/s,vy=110m/sv x = 90m/s,v y=110m/s. At time t2=30.0st 2=30.0s, the components are vx=−170m/s,vy=40m/sv x =−170m/s,v y=40m/s.
(a) Sketch the velocity vectors at t1and t2.
How do these two vectors differ? For this time interval calculate
(b) the components of the average acceleration, and
(c) the magnitude and direction of the average acceleration.

Answers

The average acceleration [tex]\vec a_{\rm ave}[/tex] over some time interval [tex][t_1,t_2][/tex] is equal to the ratio of the change in velocity [tex]\vec v_2-\vec v_1[/tex] over the duration of the interval [tex]t_2-t_1[/tex], or

[tex]\vec a_{\rm ave}=\dfrac{\Delta\vec v}{\Delta t}=\dfrac{\vec v_2-\vec v_1}{t_2-t_1}[/tex]

which can be split into the [tex]x[/tex] and [tex]y[/tex] components as

[tex]a_{\rm{ave},x}=\dfrac{v_{2,x}-v_{1,x}}{t_2-t_1}=\dfrac{-170\frac{\rm m}{\rm s}-90\frac{\rm m}{\rm s}}{30.0\,\mathrm s-0}\approx-8.67\dfrac{\rm m}{\mathrm s^2}[/tex]

[tex]a_{\rm{ave},y}=\dfrac{v_{2,y}-v_{1,y}}{t_2-t_1}=\dfrac{40\frac{\rm m}{\rm s}-110\frac{\rm m}{\rm s}}{30.0\,\mathrm s-0}\approx-2.33\dfrac{\rm m}{\mathrm s^2}[/tex]

The magnitude of this average acceleration is

[tex]\left\|\vec a_{\rm ave}\right\|=\sqrt{{a_{\rm{ave},x}}^2+{a_{\rm{ave},y}}^2}\approx8.98\dfrac{\rm m}{\mathrm s^2}[/tex]

and its direction is [tex]\theta[/tex] such that

[tex]\tan\theta=\dfrac{a_{\rm{ave},y}}{a_{\rm{ave},x}}\implies\theta\approx-164.9^\circ[/tex]

which corresponds to a direction of about 15.1º South of West.

Your new toaster has two separate toasting units, each of which consumes 600 watts of power when it is in use. When you operate one unit, a current of 5 amperes flowsthrough the wiring in your home and the wires waste about 1 watt of power handling that current. If you operate both toasting units at once, your toaster consumes 1200 watts and the current flowing through the wiring in your home doubles to 10 amperes. How much power will the wires in your home waste now

Answers

Answer:

1.92 Watt lost

Explanation:

Power rating of each toaster = 600 Watts

Current that flows = 5 Amperes

Wasted power = 1 Watt

Voltage of toaster can be gotten from P = [tex]I^{2}[/tex]R

where I = current

and R = Resistance

600 = [tex]5^{2}[/tex] x R

R = 600/25 = 24 Ohms.

According to joules loss due to heating of wire

Power loss P ∝ [tex]I^{2}[/tex]R

imputing values,

1 ∝ [tex]5^{2}[/tex] x 24

1 ∝ 600

to remove the proportionality sign, we introduce a constant k

1 = 600k

k = 1/600 = 0.00167

For the case where the current is doubled to 10 ampere, as the power doubles to 1200 W.

The resistance across the wire becomes

1200 = [tex]10^{2}[/tex]R

R = 1200/100 = 12 Ohms

power loss P = k x [tex]I^{2}[/tex]R

P = 0.0016 x [tex]10^{2}[/tex] x 12

P = 1.92 Watt lost

This question involves the concepts of power, current, and resistance.

The power wasted by the wires in the home for two units will be "4 watt".

POWER WASTAGE

The power wasted by the wires can be given in terms of current and resistance by the following formula:

[tex]P=I^2R\\\\\frac{P}{I^2}=R=Constant\\\\\frac{P_1}{I_1^2}=\frac{P_2}{I_2^2}[/tex]

where,

P₁ = Power wasted for one unit = 1 wattI₁ = current through wires for one unit = 5 AR = Resistance of wires = constantP₂ = Power wasted for two units = ?I₂ = Current through wires for two units = 10 A

Therefore,

[tex]\frac{1\ watt}{(5\ A)^2}=\frac{P_2}{(10\ A)^2}\\\\P_2=\frac{(1\ watt)(100\ A^2)}{25\ A^2}[/tex]

P₂ = 4 watt

Learn more about power here:

https://brainly.com/question/7963770

HELP, END OF SCHOOL YEAR, 30 POINTS Unit 9 lesson 15 astronomy unit test answers I ONLY HAVE ONE MORE DAY
1 As evidence supporting the Big Bang theory, what does the redshift of light from galaxies indicate?
The universe is mainly hydrogen.

The universe is 13.8 billion years old.

The universe is cooling off.

The universe is expanding.

2 Which evidence supports the idea that Cosmic Microwave Background radiation is a remnant of the Big Bang?(1 point)

Its temperature is uniform.

Its mass fluctuates greatly.

Its temperature fluctuates greatly.

Its mass is uniform.

3 Which of these items provide evidence supporting the Big Bang theory? Select the two correct items.(1 point)

rate of star formation

composition of matter in the universe

sizes and shapes of distant galaxies

cosmic background radiation

4 How does the change in the temperature of the universe provide evidence for universe expansion that supports the Big Bang Theory?(1 point)

The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.

The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.

The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.

The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.

5 How does weak background radiation coming from every direction in the sky support the Big Bang Theory?(1 point)

It provides evidence of the universe's increasing mass.

It provides evidence of universe expansion.

It provides evidence of universe contraction.

It provides evidence of the universe's decreasing mass.

6 Which statements describe ways that nuclear fission is different than nuclear fusion? Select the two correct answers.(1 point)

Nuclear fission is used to produce electricity at nuclear power plants.

Nuclear fission involves one large atom splitting into two smaller atoms.

Nuclear fission takes place in the nucleus of an atom.

Nuclear fission releases a huge amount of energy.


7 Blueshift is observed when(1 point)

a distant luminous object travels rapidly away from an observer.

a distant luminous object travels rapidly towards an observer.

a luminous object travels alongside an observer.

a luminous object is stationary compared to an observer.


8 Which statements about nuclear fusion are false? Select the two correct answers.(1 point)

The fuel for nuclear fusion is often uranium.

Nuclear fusion is used to generate electricity at nuclear power plants.

Nuclear fusion releases large amounts of energy.

Nuclear fusion takes place in the cores of stars.


9 Which of the following statements provide evidence to support the big bang theory? Select the two correct answers.

The ratios of hydrogen and helium in the universe match those of the early universe.

The universe began as a very high density singularity.

Dark matter makes up the majority of matter in the galaxy.

Small spiral galaxies become larger elliptical galaxies when they collide.


10 Which represents a correct match between ideas related to the formation of the universe? Select the two correct answers.(1 point)

accelerating expansion — dark energy

structures forming in the early universe — dark matter

greatest percent of mass of universe — dark matter

glowing nebulae — dark energy

11 How is dark energy related to the theory of the Big Bang?(1 point)

It causes the expansion of the universe to accelerate.

It causes the universe to expand.

It seeded the formation of galaxies and star clusters.

It causes the spinning of galaxies.

Answers

Answer:

1. The Universe is Expanding

2. It’s temperature is it’s uniform

3. Cosmic background radiation

4. I will give a hint for this one, since I don’t know, the hint is the universe is cooling.

5. It provides evidence of universe expansion.

6. Sorry I don’t know the rest

Explanation:

The universe is the collection of every item in space and time as well as the contents of those items

The correct options are as follows;

1. The universe is expanding

2. Its temperature is uniform

3. Composition of matter in the universe, cosmic background radiation

4. The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses

5. It provides evidence of universe expansion

6. Nuclear fission involves one large atom splitting into two smaller atoms

Nuclear fission takes place in the nucleus of an atom

7. A distant object travels rapidly towards an observer

8. The fuel in nuclear fusion is often uranium

Nuclear fusion is used to generate electricity at nuclear power plants

9. The universe began as a very high density singularity

Dark matter makes up majority of the universe

10.  Acceleration expansion — Dark energy

Structure forming in the early universe — Dark matter

11. It causes the expansion of the universe to accelerate

The reasons for selecting the above options are as follows;

1. The universe is expanding

The redshift of light from galaxies indicates that that are moving away

2. Its temperature is uniform

The uniform temperature of the microwave background suggest a common source

3. Composition of matter in the universe, cosmic background radiation

The matter present in the universe are characteristically similar in their origins

The cosmic background provides evidence of the existence of a singularity

4. The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses

Based on the Big Bang Theory, the temperature of the universe is reducing as the universe expands, compared to the initial temperature

5. It provides evidence of universe expansion

The background radiation coming from a single source as the rest of the universe is expected to spread throughout the universe

6. Nuclear fission involves one large atom splitting into two smaller atoms

Nuclear fission takes place in the nucleus of an atom

Nuclear fusion involves the joining of small atoms to form a larger atom

7. A distant object travels rapidly towards an observer

The redshift is the opposite, indicating that the object is moving further away

8. The fuel in nuclear fusion is often uranium

Nuclear fusion is used to generate electricity at nuclear power plants

Nuclear fusion usually consists of joining small atoms together. It has not been used for commercial energy production

9. The universe began as a very high density singularity

According to the Big Bang Theory, the universe started from the dense, high temperature singularity

Dark matter makes up majority of the universe

10.  Acceleration expansion — Dark energy

Dark energy causes expansion

Structure forming in the early universe — Dark matter

Dark matter is instrumental to the formation of structures in the universe

11. It causes the expansion of the universe to accelerate

Dark energy is seen as the cause of the accelerating expansion of the universe

Learn more about the universe here:

https://brainly.com/question/17525451

A 110-kg football player running at 8.00 m/s catches a 0.410-kg football that is traveling at 25.0 m/s. Assuming the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate: the final velocity if the ball and player are going in the same directio

Answers

Answer:[tex]8.062\ m/s[/tex]

Explanation:

Given

masss of football player [tex]M=110\ kg[/tex]

Velocity of football player [tex]u_1=8\ m/s[/tex]

mass of football [tex]m=0.41\ kg[/tex]

velocity of football [tex]u_2=25\ m/s[/tex]

Final velocity will be given by applying conservation of linear momentum

After catching the ball Player and ball moves with same velocity

[tex]\Rightarrow Mu_1+mu_2=(M+m)v[/tex]

[tex]\Rightarrow 110\times 8+0.41\times 25=(110+0.41)v[/tex]

[tex]\Rightarrow 880+10.25=110.41\times v[/tex]

[tex]\Rightarrow v=\frac{890.25}{110.41}=8.063\ m/s[/tex]

So, final velocity will be [tex]8.062\ m/s[/tex]

A 550 kg dragster accelerates from rest to a final speed of 110 m/s in 400 m (about a quarter of a mile) and encounters an average frictional force of 1200 N. What is its average power output in watts and horsepower if this takes 7.30 s

Answers

Answer:

[tex]52.25\times10^4W\\699.1 hp[/tex]

Explanation:

According to the energy conversation:

ΔK=[tex]-f_kd+W[/tex]

ΔK=[tex]K_f-K_i ; K=1/2 mv^2[/tex]

where,

[tex]k_i, k_f[/tex] are initial and final kinetic energy of the system.

[tex]v_i[/tex]= initial velocity of the system

[tex]v_f[/tex]=final velocity of the system

W= total work done on the system

[tex]f_k[/tex]= friction force

d= distance traveled

Given: [tex]v_f[/tex]=110m/s

d=400m

[tex]f_k[/tex]=1200N

[tex]v_i[/tex]=0m/s

t=7.3s

ΔK=[tex]-f_kd+W[/tex]

W= ΔK + [tex]f_kd[/tex]

  =[tex]K_f-K_i+f_kd\\[/tex]

  [tex]=1/2 mv_f^2-1/2 mv_i^2+f_kd\\=\frac{1}{2} \times 550\times110^2 - \frac{1}{2} \times 550\times0^2+ (1200\times400)\\=3807500[/tex]

[tex]P=\frac{W}{t} =\frac{3807500}{7.3} \\P=52.15 \times10^4w\\P=\frac{52.15 \times10^4}{746} \\P=699.1 hp[/tex]

Julie throws a ball to her friend Sarah. The ball leaves Julie's hand a distance 1.5 meters above the ground with an initial speed of 16 m/s at an angle 32 degrees; with respect to the horizontal. Sarah catches the ball 1.5 meters above the ground.
1) What is the horizontal component of the ball’s velocity when it leaves Julie's hand?
2) What is the vertical component of the ball’s velocity when it leaves Julie's hand?
3) What is the maximum height the ball goes above the ground?
4) What is the distance between the two girls?
5) How high above the ground will the ball be when it gets to Julie? (note, the ball may go over Julie's head.)

Answers

Answer:

Explanation:

1.  [tex]V_{x}[/tex] = [tex]V_{0}[/tex] * cos[tex]\alpha[/tex] ⇒ 16*cos32 ≈ 13.6 m/s (13.56)

2. [tex]V_{y}[/tex] = [tex]V_{0}[/tex] * sin[tex]\alpha[/tex] ⇒ 16* sin32 ≈ 9.4 m/s

3. [tex]y_{max}[/tex] = [tex]\frac{v_{0}^2*sin^2\alpha}{2g}[/tex]= [tex]\frac{16^2*sin^232}{2*9.8}[/tex] (the g (gravity) depends on the country but i'll take the average g which is 9.2m/s^2)

[tex]y_{max}[/tex] ≈ 3.6677+1.5 ≈ 5.2m

4.  [tex]x_{max}[/tex] = [tex]\frac{v_{0}^2*sin(2\alpha)}{g}[/tex]=[tex]\frac{16^2*sin(2*32)}{9.8}[/tex] ≈ 23.5m (23.47)

5. -

answer 4 could be wrong, not certain about that one and i don't know 5

The site from which an airplane takes off is the origin. The X axis points east, the y axis points straight up. The position and velocity vectors of the plane at a later time are given by r=(1.21x103i+3.45x104;)m and v= (2 i-3.5j) m/s The magnitude, in meters, of the plane's displacement from the origin is:_________
a. 2.50 x104
b. 1.45 x 104
c. 3.45x104
d. 2.5x103
e. none of the above

Answers

Answer:

d = 3.5*10^4 m

Explanation:

In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

[tex]\vec{r}=(1.21*10^3\hat{i}+3.45*10^4\hat{j})m[/tex]

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:

[tex]d=\sqrt{(x-x_o)^2+(y-y_o)^2}[/tex]   (1)

where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

[tex]d=\sqrt{(1.12*10^3-0)^2+(3.45*10^4-0)^2}=3.45*10^4m[/tex]

hence, the displacement of the airplane is 3.45*10^4 m

Other Questions
Solve the following systems of equations using the substitution method. What is the value of a? 3a-5b=10 a+7b=12 A) a=5 B) a=6 C) a=1 D) a=7 The price of a ring was increased by 9% to 1800. What was the price before the increase? Give your answer to the nearest penny. an=(3n+4)n(4n8)n In this problem you must attempt to use the Root Test to decide whether the series converges. Compute L=limn[infinity]|an|n Enter the numerical value of the limit L if it converges, INF if it diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. L= Which of the following statements is true? A. The Root Test says that the series converges absolutely. B. The Root Test says that the series diverges. C. The Root Test says that the series converges conditionally. D. The Root Test is inconclusive, but the series converges absolutely by another test or tests. E. The Root Test is inconclusive, but the series diverges by another test or tests. F. The Root Test is inconclusive, but the series converges conditionally by another test or tests. Enter the letter for your choice here: In this passage, which type of rhetoric is Ms. Dundum using?Before the chemistry final exam, Ms.Dundum calmly tellsher students about a previous student who was so nervousabout failing that she almost made herself sick. Ms.Dundum recounts how the student took a deep breath tocalm down and reminded herself of all the studying she'ddone. The student ended up getting an A on the test andwas very satisfied with the result.O A. LogosO B. PathosO C. EthosO D. Metaphor Plz help me with this question When a number is tripled, it gives the same result as when 32 is added to it.What is the number? How many decimal positions are moved to concert a meter to a kilometer? Decide whether the equation is a function, not a function, linear but not a function, or a linear function. Choose the best option.8x-3y=-2bFunctionNot a FunctionLinear But Not a Linear FunctionLinear Functiond I need help with number 8 please help me Alguien me puede ayudar con en esto por favor !!! Kareem has a pencil that is 13.5 centimetersong and a crayon that is 87.5 millimetersong. How many millimeters longer isthe pencil than the crayon?(1 centimeter = 10 millimeters) Help me pleaseeee and thanks When landlords wrongfully withhold security deposits, they can often be sued for three times the amount of the security deposit. Is this reasonable? Should a landlord have to pay $3000 for a $1000 debt? What if you fail to pay a rent on time? Should you have to pay three times the amount of your normal rent? If your answers to these two questions are different, why is that? I need the answers to this question super quick!! Thank yoh What impact does the atmosphere have on the Earth's cycles? Select four options,produces wind currentstransfers nitrogen from air to soiltransfers water into Earth's oceansmoves oxygen from volcanic eruptions for plantsmoves oxygen and carbon dioxide through the biosphere? 1. Describe one moment in "The Tell-Tale Heart" where you think the narrator does not "know he was doing what was wrong." 2. Describe one moment in "The Tell-Tale Heart" where you think the narrator does "know he was doing what was wrong." You make an iron (II) sulfate solution with a molarity of 2.1 M. If the solution is 500 mL total, how many grams of iron (II) sulfate is that? could someone please help me with this problem? pls help as soon I will give brainlist 5. What is the simplified form of (2x2 + 4x 3)(3x + 1)?06x3 + 10x2 5x + 3O 6x3 + 14x + 5x 3O 6x3 + 14x2 5x 3O 6x3 10x2 5x - 3