Answer: Atoms that lose electrons acquire a positive charge as a result because they are left with fewer negatively charged electrons to balance the positive charges of the protons in the nucleus. Positively charged ions are called cations. Most metals become cations when they make ionic compounds.
Explanation: hope this helps
A rectangular loop with dimensions 4.20 cm by 9.50 cm carries current I. The current in the loop produces a magnetic field at the center of the loop that has magnitude 3.10×10−5 T and direction away from you as you view the plane of the loop. What are the magnitude and direction (clockwise or counterclockwise) of the current in the loop?
Answer:
1.63 A and in clockwise direction
Explanation:
The magnetic field due to the rectangular loop is :
[tex]$B=\frac{2 \mu_0 I}{\pi}\left(\frac{\sqrt{L^2+W^2}}{LW}\right)$[/tex]
Given : W = 4.20 cm
[tex]$=4.20 \times 10^{-2} \ m$[/tex]
L = 9.50 cm
[tex]$= 9.50 \times 10^{-2} \ m$[/tex]
[tex]$B = 3.40 \times 10^{-5} \ T $[/tex]
Rearranging the above equation, we get
[tex]$I=\frac{B \pi LW}{2 \mu_0\sqrt{L^2+W^2}}$[/tex]
[tex]$I=\frac{(3.40 \times 10^{-5}) \pi(9.50 \times 10^{-2})(4.20 \times 10^{-2})}{2(4 \pi \times 10^{-7})\sqrt{(9.50 \times 10^{-2})^2+(4.20 \times 10^{-2})^2}}$[/tex]
I = 1.63 A
So the magnitude of the current in the rectangular loop is 1.63 A.
And the direction of current is clockwise.
the dances created and performed collectively by the ordinary people.
Answer:
Folk dance
Explanation:
hope i helped :)
A small cork with an excess charge of +6.0 μC (1 μC = 10 -6 C) is placed 0.12 m from another cork, which carries a charge of -4.3 μC. a. What is the magnitude of the electric force between the corks? b. Is this force attractive or repulsive? c. How many excess electrons are on the negative cork? d. How many electrons has the positive cork lost?
Answer:
a.16.125 N b. The force is an attractive force. c. 2.68 × 10¹³ electrons d. 3.75 × 10¹³ electrons
Explanation:
a. What is the magnitude of the electric force between the corks?
The electrostatic force of attraction between the two corks is given by
F = kq₁q₂/r² where k = 9 × 10⁹ Nm²/C², q₁ = +6.0 μC = +6.0 × 10⁻⁶ C, q₂ = -4.3 μC = -4.3 × 10⁻⁶ C and r = distance between the corks = 0.12 m
Substituting the values of the variables into the equation, we have
F = kq₁q₂/r²
F = 9 × 10⁹ Nm²/C² × +6.0 × 10⁻⁶ C × -4.3 × 10⁻⁶ C/(0.12 m)²
= -232.2 × 10⁻³ Nm²/(0.0144 m)²
= -16125 × 10⁻³ N
= -16.125 N
So, the magnitude of the force is 16.125 N
b. Is this force attractive or repulsive?
Since the direction of the force is negative, it is directed towards the positively charged cork, so the force is an attractive force.
c. How many excess electrons are on the negative cork?
Since Q = ne where Q = charge on negative cork = -4.3 μC = -4.3 × 10⁻⁶ C and n = number of excess electrons and e = electron charge = -1.602 × 10⁻¹⁹ C
So n = Q/e = -4.3 × 10⁻⁶ C/-1.602 × 10⁻¹⁹ C = 2.68 × 10¹³ electrons
d. How many electrons has the positive cork lost?
We need to first find the number of excess positive charge n'
Q' = n'q where Q = charge on positive cork = + 6.0 μC = + 6.0 × 10⁻⁶ C and n = number of excess protons and q = proton charge = +1.602 × 10⁻¹⁹ C
So n' = Q'/q = +6.0 × 10⁻⁶ C/+1.602 × 10⁻¹⁹ C = 3.75 × 10¹³ protons
To maintain a positive charge, the number of excess protons equals the number of electrons lost = 3.75 × 10¹³ electrons
An electron and a proton are both released from rest, midway between the plates of a charged parallel-plate capacitor. The only force on each of the two particles is the force from the uniform electric field due to the capacitor. Each particle accelerates until striking one of the plates of the capacitor. (There is no gravity in this problem and we ignore the small force between the electron and the proton.) How do the final kinetic energies and final speeds (just before striking a plate) compare
Answer:
Explanation:
Let the potential difference between the middle point and one of the plate be ΔV .
electric potential energy will be lost and it will be converted into kinetic energy .
Electrical potential energy lost = Vq , where q is charge on charge particle .
For proton
ΔV× q = 1/2 M V² ( kinetic energy of proton )
where M is mass and V be final velocity of proton .
For electron
ΔV× q = 1/2 m v² ( kinetic energy of electron )
where m is mass and v be final velocity of electron . Charges on proton and electron are same in magnitude .
As LHS of both the equation are same , RHS will also be same . That means the kinetic energy of both proton and electron will be same
1/2 M V² = 1/2 m v²
(V / v )² = ( m / M )
(V / v ) = √ ( m / M )
In other words , their velocities are inversely proportional to square root of their masses .
A softball player is running at 4.88 m/sec when she slides into second base coming to a stop in .872 seconds. How far did she slide, and what was her acceleration?
Answer:
d=v1t - .5at^2
d=4.88 x .872 - 0.5 x (4.88/0.872) x 0.872^2
d=4.255 - 2.12
d= 2.135m
Explanation:
acceleration is negative because she is slowing down.
If water is flowing in a 1-inch diameter pipe with an average velocity of 3 m/s and the wall roughness is 400 microns, calculate the wall shear stress.
Answer:
Shear stress is 50.63 Pascal
Explanation:
As we know shear stress = [tex]\frac{\rho V^2 f}{8} \\[/tex]
Rho is the density
V is the velocity
f is the value from Moody's chart
We will know determine Reynolds number to determine the flow type and then the f value
[tex]R_e = \frac{ \rho*V*D}{u}[/tex]
[tex]R_e = \frac{1000*3*0.0254}{0.001} = 76200[/tex]
This is a turbulent flow and hence the roughness index is [tex]\frac{E}{D} = 0.0157[/tex], From this we get f = 0.045
Now shear stress = [tex]\frac{1000 * 3^2 * 0.045}{8} = 50.63[/tex] Pa
Imagine carefully weighing a metal can, leaving it out in the rain for weeks and weeks
until it was very rusted, and then carefully weighing it again. Would the can be heavier or lighter after it was rusted? Why?
Answer:
The can would be heavier.
Explanation:
The more rust is on the can, (Or object) the more it weights it down.
Answer:
The answer would be heavier, though it depends upon the type of metal. Rusting is essentially corrosion. Rust is often caused by a piece of metal getting soaked in water and then being exposed to oxygen. The rust will add more weight to the can so it becomes heavier.
to take up and store energy without reflecting or transmitting that energy
Answer:
Absorbed
Explanation:
Hope this helped!!!
What unit is kinetic energy measured in?
Explanation:
jouleeeee is the unit kinetic energy is measured in and kinetic energy formula is 1/2mv (square)
Which of the following processes is most likely to have smaller atomic nuclei
as reactants?
Answer:
It would be B.
Explanation:
A police car is driving north with a siren making a frequency of 1038 hz. Moops is driving north behind the police car at 12 m/s and hard a frequency of 959hz. How fast is the police car going?
Answer:
The police car is moving at 41.24 m/s.
Explanation:
To find the speed of the police car we need to use the Doppler equation:
[tex] f = f_{0}(\frac{v + v_{r}}{v + v_{s}}) [/tex]
Where:
v: is the speed of the sound = 343 m/s
[tex]v_{r}[/tex]: is the speed of the receiver = 12 m/s
[tex]v_{s}[/tex]: is the speed of the source =?
f: is the observed frequency = 959 Hz
f₀: is the emitted frequency = 1038 Hz
Both terms are positive in the fraction because the velocity of the sound is in the opposite direction to both velocities of the police car and the other car.
By solving the above equation for [tex]v_{s}[/tex] we have:
[tex] v_{s} = \frac{f_{0}(v + v_{r})}{f} - v = \frac{1038(343 + 12)}{959} - 343 = 41.24 m/s [/tex]
Therefore, the police car is moving at 41.24 m/s.
I hope it helps you!
state two other ways in which evaporation is different from boiling
What happens, if anything, when you change the mass of the planet? Why do you think the mass of the planet does, or does not, affect the orbit of the planet?
Answer:
We know that the gravitational force between two objects of mass M1 and M2 that are at a distance R, is given by:
F = G*(M1*M2)/R^2
Where G is a constant.
If you reduce one of the masses, then the gravitational force between the objects will change.
So if we take un account the Earth and the Sun, when you reduce the mass of Earth, the force between Earth and the Sun will decrease, and this will change the orbit of the Earth around the Sun.
(The orbit also depends on the gravitational force between the Earth and the other planets in the system, and all those forces also change, which also has an impact in the orbit change)
What happens when an object is moved against gravity, such as rolling a toy car up a ramp?
Answer:
it goes up until we help it to but the moment we stop support it gets affected by gravity and goes back
Explanation:
What percentage of the starting matter in our solar system went into the formation of our sun?
Answer:
Eventually the pressure in the core was so great that hydrogen atoms began to combine and form helium, releasing a tremendous amount of energy. With that, our Sun was born, and it eventually amassed more than 99 percent of the available matter
Which one of the following items contains matter in the plasma state?
Stars
liquid water
ice cubes
Answer:
Stars i think
Explanation:
What process do scientists think is causing the movement of Earth’s tectonic plates? Name one other place where this process is occurring naturally.
Answer:
convection currents in the earth's mantle, heat and pressure within the earth cause the hot magma to flow in convection currents. This causes the movement of the tectonic plates.
rift valley, Africa
plz mark me as brainliest
Who sponsored Felix Baumgartner in the second space jump that took placed in
2008?
Alban Geissler, who developed the SKYRAY carbon fiber wing with Christoph Aarns, suggested after Baumgartner's jump that the wing he used was a copy of two prototype SKYRAY wings sold to Red Bull (Baumgartner's sponsor) two years earlier. - wiki
A 100 watt bulb with 60 volts has a current flow of how many Amps?
Answer:
I = 1.666... amps
Explanation:
P = I*V or Power = Current * Voltage
(100 watts) = I * (60 Volts)
I = 1.666... amps
In a real pully system the work supplied must be _____ the work accomplished and no links plz
define one kilogram mass
Answer:
a unit of mass or weight equaling one thousand grams
Atmospheric pressure on the peak of Mt. Everest can be as low as 0.197 atm, which is why
climbers need to bring oxygen tanks for the last part of the climb. If the climbers carry 10.0
liter tanks with an internal gas pressure of 40 atm, what will be the volume in liters of the gas
when it is released from the tanks?
Answer:2,030
Explanation:
40 atm x 10.0 L = 400
400/0.197 atm = 2,030
Question:
(need answers now I have time)
A freely-falling object is accelerating.
A. True
B. False
Answer:
the answer is true.
Explanation:
hope it will help you
A 5000kg elephant steps into a large spring and compresses it from 1m long to 50cm long what is the spring constant of the spring
Answer: 98 kN/m
Explanation:
Given
Mass of elephant [tex]m=5000\ kg[/tex]
Spring compresses from [tex]1\ m\ (100\ cm) \text{to}\ 50\ cm[/tex]
i.e. change in length is [tex]100-50=50\ cm[/tex]
spring force is given by [tex]kx[/tex]
where k=spring constant
x=change in length
The weight of elephant must be equal to the spring force
[tex]\Rightarrow W=kx\\\Rightarrow 5000\times 9.8=k\times 0.5\\\Rightarrow k=98,000\ N/m\ or\ 98\ kN/m[/tex]
Can anyone help me with this question please .
I’ll mark as brainliest
No links
Answer:
A
Explanation:
The wavelength is the spatial time of an occasional wave, the distance over which the wave's shape rehashes.
Hope this helped!!
Answer:
wavelength
Explanation:
POR FAVOR AYUDENME A RESOLVER ESTO:
Halla el coeficiente de dilatación lineal de una varilla que a 10 grados centígrados mide 125 metros y cuya longitud a 85 grados centígrados es 125.20 m. ¿De qué material será?
Answer:
α = 2.13 10⁻⁵ C⁻¹ , the closest material is ALUMINUM
Explanation:
The expression for thermal expansion is
ΔL = α L₀ ΔT
temperatures are
ΔT = 85 - 10 = 75 ° C
the length of the rod is L₀ = 125 m and L_f = 125.20 m
ΔL = 125.20 - 125 = 0.20 m
α = [tex]\frac{1}{L_o} \frac{\Delta L }{\Delta T}[/tex]
α = [tex]\frac{ 1}{125} \ \frac{0.20 }{75}[/tex]
α = 2.13 10⁻⁵ C⁻¹
When reviewing the table, the closest material is ALUMINUM
If an object possesses 500 J of potential energy, how much work is needed to lift this object?
a) 500 J
b) 250 J
c) 150 J
d) 1000 J
Answer:
a) 500 J
Explanation:
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;
[tex] P.E = mgh[/tex]
Where,
P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
In Science, the potential energy possessed by an object or body is the same as the work done by the object or body.
Since we know that the object possessed 500 Joules of potential energy; it would ultimately require to do a work of 500 Joules to lift the object.
Mathematically, work done = force * distance
But force = mass * acceleration due to gravity
F = mg; d = h
Substituting into the work done formula, we have;
Hence, Workdone = Fd = mgh
A car travels 140 miles in 3 hours. What is its velocity?
Answer:
46.67 miles/s
Explanation:
...........
A motion sensor emits sound, and detects an echo 0.0115 s after. A short time later, it again emits a sound, and hears an echo after 0.0183 s. How far has the reflecting object moved? (Speed of sound = 343 m/s) (Unit = m)
Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Eee A student conducts an investigation to determine how the force of gravity affects different objects dropped from different heights. The student tests each object one time and announces that all objects experienced gravity the same way. What is wrong with the student's reasoning?
Answer:
For which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.
Explanation:
The force of gravity comes from Newton's second law with the force the universal attraction
F = ma
F = [tex]G \frac{m_1 M}{(R_e +h)^2}[/tex]
we substitute
[tex]G \frac{m_1 M}{ (R_e+ h)^2}[/tex] = m₁ a
where Re is the radius of the Earth 6.37 106 m
a = [tex]G\frac{M}{R_e^2} \ ( 1 + \frac{h}{R_e})^{-2}[/tex]
In general, the height is much less than the radius of the earth, therefore the term ha / Re is very small and we can use a series expansion leaving only the first fears.
(1 + x)⁻² = 1 -2x + [tex]\frac{2 \ 1}{2!}[/tex] x²
we substitute
a = g₀ ([tex]1 - 2 \frac{h}{R_e}[/tex] )
with
g₀ = [tex]G \frac{M}{R_e^2}[/tex]
let's launch the expression.
* For small height compared to the radius of the earth we can neglect the last term
g = g₀
* For height comparable to the radius of the Earth
g = g₀ [tex](1 - \frac{2h}{Re} )[/tex]
We see that the acceleration of gravity is decreasing.
For which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.
The student's reasoning gone wrong when the analysis is undertaken for the increasing heights, to drop the object.
The given problem is based on the concept of gravity and gravitational force. The force of gravity comes from Newton's second law with the force the universal attraction as,
F = ma
[tex]F=G\dfrac{mM}{(R+h)^{2}}\\\\\\ma = G\dfrac{mM}{(R+h)^{2}}[/tex]
Here, a is the linear acceleration, m is the mass of object, M is the mass of Earth, R is the radius of Earth and h is the height from where the objects will be dropped. Then,
[tex]a = \dfrac{GM}{R^{2}} \times(1+h/R)^{-2}[/tex]
In general, the height is much less than the radius of the earth, therefore the term h/ R is very small, hence can be neglected.
[tex]a = \dfrac{GM}{R^{2}}\\\\a=g = \dfrac{GM}{R^{2}}[/tex]
g is the gravitational acceleration.
For small height compared to the radius of the earth we can neglect the last term as,
a = g
And for the height comparable to radius of Earth,
[tex]a = \dfrac{GM}{R^{2}} \times(1+h/R)^{-2}\\\\a=g \times(1+h/R)^{-2}[/tex]
Clearly, the acceleration of gravity is decreasing, for which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.
Thus, we can conclude that the student's reasoning gone wrong when the analysis is undertaken for the increasing heights, to drop the object.
Learn more about the gravitational force here:
https://brainly.com/question/15647838