Answer:
The amount of water that will power a battery with that rating = 7.35 m³
Explanation:
The power rating for the battery is missing from the question.
Complete Question
Assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery with power rating, 12 V, 50 Ampere-minutes
Solution
Potential energy possessed by water at that height = mgH
m = mass of the water = ρV
ρ = density of water = 1000 kg/m³
V = volume of water = ?
g = acceleration due to gravity = 9.8 m/s²
H = height of water = 50 cm = 0.5 m
Potential energy = ρVgH = 1000 × V × 9.8 × 0.5 = (4900V) J
Energy of the battery = qV
q = 50 A.h = 50 × 60 = 3,000 C
V = 12 V
qV = 3,000 × 12 = 36,000 J
Energy = 36,000 J
At a 100% conversion rate, the energy of the water totally powers the battery
(4900V) = (36,000)
4900V = 36,000
V = (36,000/4900)
V = 7.35 m³
Hope this Helps!!!
Which of the followings is true about EMF?
a. an induced emf is caused by a changing magnetic flux.
b. an emf can only be induced in a conducting loop by moving the loop through an area that has a constant magnetic field.
c. an induced emf can be observed by measuring the current that is created.
d. an induced emf and conventional induced current are in opposite directions.
Answer:
a. TRUTH
b. FALSE
c. TRUTH
d. FALSE
Explanation:
The emf (electromagnetic force) is generated in a loop or solenoid by the change in the magnetic flux in a closed conductor path (for example, a wire).
This can be noted in the following formula, which is known as the Lenz's law:
[tex]emf=-N\frac{d\Phi_B}{dt}=-N\frac{d(AB)}{dt}[/tex] (1)
Then, the change, in time, of the area of the conductor, or the change in the magnitude of the magnetic field, the induced emf acquires different values. Furthermore, the loops have a resistance, then, a current can be measured when an emf is induced.
Based on this information you have:
a. an induced emf is caused by a changing magnetic flux. TRUTH
b. an emf can only be induced in a conducting loop by moving the loop through an area that has a constant magnetic field. FALSE
c. an induced emf can be observed by measuring the current that is created. TRUTH
d. an induced emf and conventional induced current are in opposite directions. TRUTH (the minus sing in the equation (1) )
Jason takes off from rest across level water on his jet-powered skis. The combined mass of Jason and his skis is 75 kg (the mass of the fuel is negligible). The skis have a thrust of 200 N and a coefficient of kinetic friction on water of 0.10. Unfortunately, the skis run out of fuel after only 75 s. What is Jason's top speed?
Answer:
v = 126 m / s
Explanation:
Let's analyze this exercise a little, they give us the thrust that is the applied force and the time that it lasts, and they ask us for the final speed, so we can use the Impulse ratio and the variation of the amount of movement
I = F t = Dp
F t = pf -p₀
Now let's use Newton's second law to find the net thrust
F = E - fr
the friction force has the formula
fr = μ N
let's write Newton's second law on the y-axis
N-W = 0
N = W
we substitute
fr = μ mg
we look for the net out
F = 200 - μ mg
With the skater starting from rest, the initial speed is zero (vo = 0)
we substitute
(200 - very m g) t = m v
v = (200 µm - very g) t
let's calculate
v = (200/75 - 0.10 9.8) 75
v = 126 m / s
1. Describe what must happen to an atom to make it
A. A cation
B. An anion
2. Describe why some acids are strong while other acids are weak
3. Compare protons, neutrons and electron, listing their similarities and differences
4. Explain why you breathe faster and deeper when exercising
Answer:
Explanation:
Atoms—and the protons, neutrons, and electrons that compose them—are extremely small. For example, a carbon atom weighs less than 2 × 10−23 g, and an electron ... The amu was originally defined based on hydrogen, the lightest element, ... but three-letter symbols have been used to describe some elements that have ...
Protons: Protons are positively charged particles that are also found in the nucleus. Like neutrons, protons give mass to the atom but do not participate in ... 3) Electrons: Electrons are negatively charged particles that are found in ... pair of electrons with 4 different hydrogen atoms, forming a molecule of CH4 (methane).Elements differ from each other in the number of protons they have, e.g. ... Atoms of an element that have differing numbers of neutrons (but a constant atomic ... Electrons, because they move so fast (approximately at the speed of light), ...toms are made up of particles called protons, neutrons, and electrons, which ... Therefore, they do not contribute much to an element's overall atomic mass. ... For instance, iron, Fe, can exist in its neutral state, or in the +2 and +3 ionic states. ... Isotopes of the same element will have the same atomic number but different ...
A beam of light is incident upon a flat piece of glass (n = 1.50) at an angle of incidence of 30.00. Part of the beam is transmitted and part is reflected. Determine the angle between the reflected and transmitted rays
Answer:
130.528779365 degrees
Explanation:
The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.
n1/n2 = sin(theta2)/sin(theta1)
let theta1 be 30 degrees, and n1 be the refractive index of air = 1
1/1.5 = sin(theta2)/sin(30deg)
solve:
sin(theta2) = 2/3 sin(30deg) = 1/3
theta2 = arcsin (1/3) = 19.4712206345 degrees
The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.
Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.
Angle between = 180-30-19.4712206345 = 130.528779365 degrees
The angle between the reflected and transmitted rays 130.5287 degrees
What is the refraction of light?The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.
[tex]\dfrac{n_1}{n_2} = \dfrac{sin(\theta_2)}{sin(\theta_1)}[/tex]
let [tex]\theta_1[/tex] be 30 degrees, and n1 be the refractive index of air = 1
[tex]\dfrac{1}{1.5} = \dfrac{sin(\theta_2)}{sin(30)}[/tex]
solve:
[tex]sin(\theta_2) = \dfrac{2}{3} sin(30) = \dfrac{1}{3}[/tex]
[tex]\theta_2 = sin ^{-1}\dfrac{1}{3} = 19.4712 \ degrees[/tex]
The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.
Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.
Angle between = 180-30-19.4712206345 = 130.528779365 degrees
Hence the angle between the reflected and transmitted rays 130.5287 degrees
To know more about the Refraction of light follow
https://brainly.com/question/10729741
An electron and a positron collide head on, annihilate, and create two 0.804 MeV photons traveling in opposite directions. What was the initial kinetic energy of an electron? What was the initial kinetic energy of a positron?
Answer:
Ke- = Ke+ = 0.294MeV
Explanation:
To fins the kinetic energy of both electron and positron you use the following formula, for the case of annihilation of one electron an positron:
2[tex]E_p=2E_o+K_{e^-}+K_{e^+}[/tex] (1)
Ep: photon energy = 0.804MeV
Eo: rest energy of one electron (and positron) = 0.51MeV
Ke-: kinetic energy of electron
Ke+: kinetic energy of positron
You replace the values of Ep and Eo in the equation (1):
[tex]K_{e^-}+K_{e^+}=2E_p-2E_o=2(0.804MeV-0.51MeV)=0.588MeV[/tex]
Iy you assume both positron and electron have the same speed, then, the kinetic energy of them are equal, and the kinetic energy of each one is:
[tex]K_{e^-}=K_{e^+}=\frac{0.588MeV}{2}=0.294MeV[/tex]
3. A ray of light incident on one face of an equilateral glass prism is refracted in such a way that it emerges from the opposite surface at an angle of 900 to the normal. Calculate the i. angle of incidence. ii. minimum deviation of the ray of light passing through the prism [n_glass=1.52]
Answer:
i) angle of incidence;i = 29.43°
ii) δm = 38.92°
Explanation:
Prism is equilateral so angle of prism (A) = 60°
Refractive index of glass; n_glass = 1.52
A) Let's assume the incident angle = i and Critical angle = θc
We know that, sin θc = 1/n
Thus;
sin θc = 1/n_glass
θc = sin^(-1) (1/n_glass)
θc = sin^(-1) (1/1.52)
θc = 41.14°
Now, the angle of prism will be the sum of external angle that is critical angle and reflected angle.
Thus;
A = r + θc
r = A - θc
So;
r = 60° - 41. 14°
r = 18.86°
From, Snell's law. If we apply it to this question, we will have;
(sin i)/(sin r) = n_glass
Where;
i is angle of incidence and r is angle of reflection.
Let's make i the subject;
i = sin^(-1) (n_glass × sin r)
i = sin^(-1) (1.52 × sin 18.86)
i = sin^(-1) 0.4914
i = 29.43°
B) The formula to calculate minimum deviation would be from;
μ = [sin ((A + δm)/2)]/(sin A/2)
Where;
μ is Refractive index
δm is minimum angle of deviation
A is angle of prism
Now Refractive index is given by a formula; μ = (sin i)/(sin r)
So; μ = (sin 29.43)/(sin 18.86)
μ = 1.52
Thus;
1.52 = [sin ((60 + δm)/2)]/(sin 60/2)
1.52 * sin 30 = sin ((60 + δm)/2)
0.76 = sin ((60 + δm)/2)
sin^(-1) 0.76 = ((60 + δm)/2)
49.46 × 2 = (60 + δm)
98.92 - 60 = δm
δm = 38.92°
9. How do air masses move?
Answer:
Air masses move with the global pattern of winds. In most of the United States, air masses generally move from west to east. They may move along with the jet stream in more complex and changing patterns.
The cornea behaves as a thin lens of focal lengthapproximately 1.80 {\rm cm}, although this varies a bit. The material of whichit is made has an index of refraction of 1.38, and its front surface is convex,with a radius of curvature of 5.00 {\rm mm}.(Note: The results obtained here are not strictlyaccurate, because, on one side, the cornea has a fluid with arefractive index different from that of air.)a) If this focal length is in air, what is the radius ofcurvature of the back side of the cornea? (in mm)b) The closest distance at which a typical person can focus onan object (called the near point) is about 25.0 {\rm cm}, although this varies considerably with age. Wherewould the cornea focus the image of an 10.0 {\rm mm}-tall object at the near point? (in mm)c) What is the height of the image in part B? (mm)d) Is this image real or virtual? Is it erect orinverted?
Answer:
Explanation:
a )
from lens makers formula
[tex]\frac{1}{f} =(\mu-1)(\frac{1}{r_1} -\frac{1}{r_2})[/tex]
f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face
putting the values
[tex]\frac{1}{1.8} =(1.38-1)(\frac{1}{.5} -\frac{1}{r_2})[/tex]
1.462 = 2 - 1 / r₂
1 / r₂ = .538
r₂ = 1.86 cm .
= 18.6 mm .
b )
object distance u = 25 cm
focal length of convex lens f = 1.8 cm
image distance v = ?
lens formula
[tex]\frac{1}{v} - \frac{1}{u} = \frac{1}{f}[/tex]
[tex]\frac{1}{v} - \frac{1}{-25} = \frac{1}{1.8}[/tex]
[tex]\frac{1}{v} = \frac{1}{1.8} -\frac{1}{25}[/tex]
.5555 - .04
= .515
v = 1.94 cm
c )
magnification = v / u
= 1.94 / 25
= .0776
size of image = .0776 x size of object
= .0776 x 10 mm
= .776 mm
It will be a real image and it will be inverted.
A bus travelling at a speed of 40 kmph reaches its destination in 8 minutes and 15 seconds. How far is the destination? a. 5.43 km b. 5.44 km c. 5.50 km d. 9.06 km
Answer:
c. 5.50 km
Explanation:
8 min * 1h/(60 min) = 8/60 = 2/15 h
15 sec* 1 min/60 sec = 1/4 min * 1h/(60 min) = 1/240 h
8 min 15 sec = (2/15+1/240)h
40 km/h *(2/15 +1/240)h =5.50 km
Answer: 5.50 km
Explanation:
still really need help with these three questions!!
Explanation:
2. No, not always. Normal force is equal to force of gravity only when there's no acceleration in the vertical direction.
For example, when you stand in an elevator that's not moving, or moving at constant speed, then the normal force equals your weight. But when the elevator accelerates upward, the normal force increases (making you feel heavier). And when the elevator slows down, the normal force decreases (making you feel lighter).
3. Yes, it is possible for an object to be moving eastward and experience a net force westward. An example is a car applying the brakes.
4. Friction force allows you to walk. When you push against the floor, the floor's friction pushes back, as Newton's third law says.
If you try to walk on a slippery surface like ice, you won't be able to push against the ice, and the ice won't push back.
A transverse wave is traveling through a canal. If the distance between two successive crests is 2.37 m and four crests of the wave pass a buoy along the direction of travel every 22.6 s, determine the following.
(a) frequency of the wave. Hz
(b) speed at which the wave is traveling through the canal. m/s
Answer:
(a) 0.0885 Hz
(b) 0.21 m/s
Explanation:
(a) Frequency: This can be defined as the number of cycle completed in one seconds.
From the question,
Note: 2 crest = one cycle,
If four crest = 22.6 s,
Then two crest = (22.6/2) s
= 11.3 s.
T = 11.3 s
But,
F = 1/T
F = 1/11.3
F = 0.0885 Hz.
(b)
Using,
V = λF...................... Equation 1
Where V = speed of wave, F = Frequency of wave, λ = wave length.
Given: F = 0.0885 Hz, λ = 2.37 m.
Substitute these values into equation 1
V = 2.37(0.0885)
V = 0.21 m/s.
A camera takes a picture that is the correct brightness and the correct zoom level, but the depth-of-focus is too small. One way to increase the depth-of-focus is to increase the f-number. Assuming that we will make changes that have the overall effect to:
1. increase the f-number, and
2. keep the brightness and the zoom level the same, which changes should we make to the aperture diameter and to the shutter time? (keep in mind we're talking about the time the shutter is open; we aren't talking about the shutter speed)
a. Increase the aperture diameter, decrease the shutter time
b. Decrease the aperture diameter, increase the shutter time
c. Increase both the aperture diameter as well as the shutter time
d. Decrease both the aperture diameter as well as the shutter time
1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a turn b. a child swinging around a pole c. a person sitting on a bench facing the center of a carousel d. a rock swinging on a string e. the Earth orbiting the Sun.
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e [tex]\mu mg = \frac{mv^2}{r}[/tex]
where [tex]\mu[/tex] is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
A person is swimming 1.1 m beneath the surface of the water in a swimming pool. A child standing on the diving board drops a ball into the pool directly above the swimmer. The swimmer sees the ball dropped from a height of 4.2 m above the water. From what height was the ball actually dropped?
Answer:
The actual height is [tex]A =3.158 \ m[/tex]
Explanation:
From the question we are told that
The depth of the person is [tex]d = 1.1 \ m[/tex]
The apparent height is [tex]D = 4.2 \ m[/tex]
Generally
The refractive index of water is [tex]n_w = 1.33[/tex]
The refractive index of the air is [tex]n_a = 1[/tex]
The apparent depth is mathematically represented as
[tex]D = A [\frac{n_w}{n_a} ][/tex]
substituting values
[tex]4.2 = A [\frac{1.33}{1} ][/tex]
=> [tex]A = \frac{4.2 }{1.33}[/tex]
[tex]A =3.158 \ m[/tex]
The ball was dropped at the height of "3.158 m". To understand the calculation, check below.
Refractive IndexAccording to the question,
Water's refractive index, [tex]n_w[/tex] = 1.33
Air's refractive index, [tex]n_a[/tex] = 1
Apparent height, D = 4.2 m
Person's depth, d = 1.1 m
We know the relation,
→ D = A[[tex]\frac{n_w}{n_a}[/tex]]
By substituting the values, we get
4.2 = A[[tex]\frac{1.33}{1}[/tex]]
By applying cross-multiplication,
A = [tex]\frac{4.2}{1.33}[/tex]
= 3.158 m
Thus the approach above is correct.
Find out more information about refractive index here:
https://brainly.com/question/10729741
A 15.0-kg bucket of water is suspended by a very light rope wrapped around a solid uniform cylinder 0.300 m in diameter with mass 12.0 kg. The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls 10.0 m to the water. (a) What is the tension in the rope while the bucket is falling? (b) With what speed does the bucket strike the water? (c) What is the time of fall? (d) While the bucket is falling, what is the force exerted on the cylinder by the axle?
Answer:
a. 42N
b. 11.8m/s
c. 1.69s
d. 160N
Explanation:
a) The tension of the rope is 130.66 N.
b) The speed of the bucket while strike the water = 4.64 m/s.
c) The time of fall is = 4.303 second.
d) While the bucket is falling, what is the force exerted on the cylinder by the axle is 130.66 N.
Mass of the water bucket; M = 15.0 kg
Mass of the cylinder; m = 12.0 kg
Height of the bucket; h = 10.0 m.
They are connected by a rope and a pivots.
So, acceleration of them is same and let it be a.
So equation of motion of both of them be:
Mg - T = Ma
and, T - mg = ma
Hence, a = g(M-m)/(M+m)
= 9.8(15-12)/(15+12)
= 1.08 m/s²
And, T = m(g+a)
= 12.0(9.8+1.08)
= 130.66 N.
a) so tension of the rope is 130.66 N.
b) speed of the bucket while strike the water = √2ah =√(2×1.08×10.0) m/s = 4.64 m/s.
c) The time of fall is = √2h/a = √(2×10/1.08) second = 4.303 second.
d) While the bucket is falling, what is the force exerted on the cylinder by the axle is tension of the rope, that is, 130.66 N.
Learn more about speed here:
https://brainly.com/question/28224010
#SPJ5
Two vectors having magnitudes of 5.00 and 9.00 respectively. If the value of their dot product is 12.0, find the angle between the two vectors.
Answer:
C = 74.53°
Explanation:
Let the magnitudes of 5.00 and 9.00 be vectors A and B respectively, hence the dot product of this vector is defined as
A.B = |A||B|cosC; let C be the angle between the vectors
12 = 5×9 cos C
Hence cos C = 12/45
C = cos^-1(12/45)
C = 74.53°
Some types of spiders build webs that consist of threads made of dry silk coated with a solution of a variety of compounds. This coating leaves the threads, which are used to capture prey, hygroscopic - that is, they attract water from the atmosphere. It has been hypothesized that this aqueous coating makes the threads good electrical conductors. To test the electrical properties of coated thread, researchers placed a 5-mm length of thread between two electrical contacts. The researchers stretched the thread in 1-mm increments to more than twice its original length, and then allowed it to return to its original length, again in 1-mm increments. Some of the resistance measurements are shown.If the conductivity of the thread results from the aqueous coating only, how does the cross-sectional area A of the coating compare when the thread is 13 mm long versus the starting length of 5 mm? Assume that the resistivity of the coating remains constant and the coating is uniform along the thread.If the conductivity of the thread results from the aqueous coating only, how does the cross-sectional area of the coating compare when the thread is 13 long versus the starting length of 5 ? Assume that the resistivity of the coating remains constant and the coating is uniform along the thread.A13mm is about 1/10 A5mm.A13mm is about 1/4 A5mm. === correct answer... I figured it out. R = pL/A. L is 2.5 times. Therefore, A must be 1/4 times.A13mm is about 2/5 A5mm.A13mm is the same as A5mm.
Answer:
A13 mm is about 1/4 A5 mm
Explanation:
Find the attachment
A kicked ball rolls across the grass and eventually comes to a stop in 4.0 sec. When the ball was kicked, its initial velocity was 20 mi/ hr. What is the acceleration of the ball as it rolls across the grass?
Answer:
-2.24 m/s²
Explanation:
Given:
v₀ = 20 mi/hr = 8.94 m/s
v = 0 m/s
t = 4.0 s
Find: a
v = v₀ + at
0 m/s = 8.94 m/s + a (4.0 s)
a = -2.24 m/s²
A sulfur dioxide molecule has one sulfur
atom and two oxygen atoms. Which is its
correct chemical formula?
A. SO2
C. S2O2
B. (SO)
D. S20
Answer:
a. SO2
Explanation:
John pushes Hector on a plastic toboggan.The free-body diagram is shown. A free body diagram with 4 force vectors. The first vector is pointing downward, labeled F Subscript g Baseline = negative 490 N. The second vector is pointing right, labeled F Subscript t Baseline = 735 N. The third vector is pointing upward, labeled F Subscript N Baseline = 490 N. The fourth vector is pointing left, labeled F Subscript f Baseline = negative 245 N. The up and down vectors are the same length. The right vector is longer than the left vector. What is the net force acting on Hector and the toboggan?
Answer:
490 N
Explanation:
is the correct answer
If the up and down vectors are the same length. The right vector is longer than the left vector, then the net force acting on Hector and the toboggan would be 490 Newtons.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
As given in the problem John pushes Hector on a plastic toboggan .The free-body diagram is shown. A free body diagram with 4 force vectors. The first vector is pointing downward, labeled F Subscript g Baseline = negative 490 N. The second vector is pointing right, labeled F Subscript t Baseline = 735 N. The third vector is pointing upward, labeled F Subscript N Baseline = 490 N. The fourth vector is pointing left, labeled F Subscript f Baseline = negative 245 N.
The net force acting on the vertical direction = 490-490
=0
The net force acting on the horizontal direction = 735 -245
=490 Newtons
Thus, the net force acting on Hector and the toboggan would be 490 Newtons.
Learn more about Newton's second law from here, refer to the link ;
brainly.com/question/13447525
#SPJ5
Concerned with citizen complaints of price gouging during past hurricanes, Florida's state government passes a law setting a price ceiling for a bottle of water equal to the market equilibrium price during normal times. After all, it seems unfair that sellers of water gain because of a hurricane.
Answer:idk
Explanation:idk
Answer:
shortage of 50 water bottles
$2
30
Explanation:
A block is supported on a compressed spring, which projects the block straight up in the air at velocity . The spring and ledge it sits on then retract. You can win a prize by hitting the block with a ball. When should you throw the ball and in what direction to be sure the ball hits the block? (Assume the ball can reach the block before the blochk reaches the ground and that the ball is thrown from a height equal to the release position of the block.)
A. At the instant when the block is at the highest point, directed at the spring.
B. At the instant when the block is at the highest point, directed at the block.
C. At the instant when the block leaves the spring, directed at the spring.
D. At the instant when the block leaves the spring, directed at the block.
E. When the block is back at the spring's original position, directed at that position.
Answer:
B. At the instant when the block is at the highest point, directed at the block.
Explanation:
Motion of an object is the change in the position of the object with respect to time. On the earth, gravity has a great influence on the motion of an object (especially in a vertical direction).
When the block is projected up in the air, it moves with a varying velocity until the velocity becomes zero due to gravity. Which make the object to rest a little in the air (when velocity = gravity) and starts to fall freely.
To ensure hitting the block by the ball, it is thrown at the block when the block is at its highest point in the air. Since the block would be at rest at this instant before it start to fall at a constant acceleration under gravity.
50 points!! please help :((
Answer:
Loudness: decreases
Amplitude: decreases
Pitch: stays the same
Frequency: stays the same
Explanation:
1.
An oscilloscope measures how much the microphone is vibrating, or how much electricity it is sending. This means that a louder noise will register higher on the oscilloscope. Since the size of the waves at Y is lower than at X, the loudness of the sound has decreased.
2.
Similarly to loudness, amplitude measures how far the crests of the waves are from the nodes. Since Y is closer to the center line than X, it has a lower amplitude.
3 and 4.
The pitch and frequency, for our purposes, are essentially the same thing here. They are dependent on how close together the waves on the oscilloscope are, or how quickly the microphone is vibrated. Since this stays the same throughout the entire sound, they both stay the same.
Hope this helps!
A Ferris wheel has radius 5.0 m and makes one revolution every 8.0 s with uniform rotation. A person who normally weighs 670 N is sitting on one of the benches attached at the rim of the wheel. What is the apparent weight (the normal force exerted on her by the bench) of the person as she passes through the highest point of her motion? ( type in your answer with no units in form xx0)
Answer:
The apparent weight of the person as she pass the highest point is [tex]N = 458.8 \ N[/tex]
Explanation:
From the question we are told that
The radius of the Ferris wheel is [tex]r = 5.0 \ m[/tex]
The period of revolution is [tex]T = 8.0 \ s[/tex]
The weight of the person is [tex]W = 670 \ N[/tex]
Generally the speed of the wheel is mathematically represented as
[tex]v = \frac{2 \pi r}{T }[/tex]
substituting values
[tex]v = \frac{2 * 3.142 * 5}{8 }[/tex]
[tex]v = 3.9 3 \ m/s[/tex]
The apparent weight (the normal force exerted on her by the bench) at the highest point is mathematically evaluated as
[tex]N = mg - \frac{mv^2}{r}[/tex]
Where m is the mass of the person which is mathematically evaluated as
[tex]m = \frac{W}{g}[/tex]
substituting values
[tex]m = \frac{670}{9.8}[/tex]
[tex]m = 68.37 \ kg[/tex]
So
[tex]N = 68.37 * 9.8 - \frac{68.37 * {3.93}^2}{5}[/tex]
[tex]N = 458.8 \ N[/tex]
1. (a) The battery on your car has a rating stated in ampere-minutes which permits you to
estimate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 ampere-minute 12
volt battery?
Answer:
Energy is stored by a 50 ampere-minute 12
volt battery is approximately = 36,000 J = 36 kJ
Explanation:
Power in electrical circuits is given as
Power = IV
But power generally is defined as energy expended per unit time
Power = (Energy/time)
Energy = Power × Time
Energy = IV × Time
Energy = (I.t × V)
I.t = 50 Ampere-minute = 50 × 60 = 3000 Ampere-seconds
V = 12 V
Energy = 3,000 × 12 = 36,000 J = 36 kJ
Hope this Helps!!!
Refer to a situation where you exert a force F on a crate of mass M, moving it at a speed v a distance d across a floor in a time interval t. The quantity F d/t is?
a.) kinetic energy of the crate
b.) potential energy of the crate
c.) linear momentum of the crate
d.) work you do on the crate
e.) power you supply to the crate
Answer:
e.) power you supply to the crate
Explanation:
According to given data, we have:
F = Force exerted on the crate
M = Mass of the crate
v = Speed of motion of the crate
d = Distance traveled by the crate across the floor
t = Time interval passed
Now, we try to analyze the given quantity:
=> F d/t
=> (Force)(Displacement)/(Time)
but, (Force)(Displacement) = Work Done
Therefore,
=> Work Done/Time
but, Work Done/Time = Power
Therefore,
=> Power
Hence, the quantity F d/t is:
e.) power you supply to the crate
If you jumped out of a plane, you would begin speeding up as you fall downward. Eventually, due to wind resistance, your velocity would become constant with time. While your velocity is constant, the magnitude of the force of wind resistance is
Answer:
Mg or your weight.
Explanation:
When your velocity is constant, the net force acting on you is 0. That means the upwards force of air resistance must fully balance the downwards force of gravity on you, which is Mg.
a research submarine what is the maximum depth it can go
Answer: 36, 200 feet deep according to information on google
Explanation:
A small submarine, the bathyscape Trieste, made it to 10,916 meters (35,813 feet) below sea level in the deepest point in the ocean, the Challenger Deep in the Marianas Trench, a few hundred miles east of the Philippines. This part of the ocean is 11,034 m (36,200 ft) deep, so it seems that a submarine can make it as deep as it's theoretically possible to go
Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed uniformly over their inner surfaces. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest.
A. 1, 2, 3, 4, 5
B. 2, then 1, 3, and 4 tied, then 5
C. 1, 4, and 5 tie, then 2 and 3 tie
D. 2 and 3 tie, then 1 and 4 tie, then 5
E. 2 and 3 tie, then 1, 4, and 5 tie
Answer:
The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie
Explanation:
Solution
The electric field due to sheets E₁ positive =б/2E₀
E₂ is negative = б/2E₀
Now,
At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction
At the point 1, the net field = -E₁ + E₂ =0
At the point A, the net field = -E₁ - E₂ = 0
Now,
At nay point inside between them, the electric field is seen to be at the same direction.
At the 2, 3 points the field is seen at the right
Thus,
E net = E₁ + E₂
= б/2E₀ + σ/2E₀
=б/E₀
Note: Kindly find an attached copy of the complete question to the solution
The correct answer is option C
The rank of the points according to the magnitude of the electric field is 1, 4, and 5 tie, then 2 and 3 tie
The magnitude of the electric field:
Let sheet 1 has positive surface charge density and sheet 2 has a negative surface charge density
The electric field (without direction) due to sheets will be
E₁ =σ/2E₀
E₂= σ/2E₀
Now,
At the point 1, 4, 5 the electric field due to the sheets is given by:
E = E₁ - E₂
E = σ/2E₀ - σ/2E₀
since the positive charge plate will have electric field lines away from the sheet and the negative charge plate will have electric field lines towards the sheet
E = 0
Now,
At points 2, 3 which are between the plates,
The net electric field is:
E = E₁ + E₂
since the electric field due to both the plates will be from positive to negative ( towards the negatively charged plate)
E = σ/2E₀ + σ/2E₀
E = σ/E₀
Learn more about surface charge density:
https://brainly.com/question/8966223?referrer=searchResults
You are comparing a reaction that produces a chemical change and one that produces a physical change. What evidence could you use to determine which type of change is occurring?
Answer: A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding. Often, physical changes can be undone, if energy is input.
Explanation: hope this helps have a good day
Answer:
If the reaction is a chemical change, new substances with different properties and identities are formed. This may be indicated by the production of an odor, a change in color or energy, or the formation of a solid.