Explanation:
The electromagnetic spectrum is the name given to the full range of frequencies and/or wavelengths that electromagnetic phenomena may have.
Human eyes respond to a small range of wavelengths in that spectrum. That response is called sight. Because humans can see that electromagnetic energy, it is called visible light.
A mass of 100 g is tied to the end of an 80.0-cm string and swings in a vertical circle about a fixed center under the influence of gravity. The speed of the mass at the top of the swing is 3.50 m/s. What is the speed of the mass at the bottom of its swing?
Answer:
the speed of the mass at the bottom of its swing is 6.61m/s
Explanation:
Applying energy conservation
[tex]\frac{1}{2}m(Vlowest)^2 = mg(2R) + \frac{1}{2}m(Vtop)^2[/tex]
There is no potential energy at the bottom as the body will have a kinetic energy there.
h= 2R = 1.6m as the diameter of the circle will represent the height in the circle.
g = 9.8m/s^2
m will cancel out, so the net equation becomes.
[tex]\frac{(Vbottom)^2}{2} = 2gR + \frac{(Vtop)^2}{2}[/tex]
= [tex]2*9.8*0.8 + \frac{(3.5)^2}{2}[/tex]
= 15.68+ 6.125
[tex]\frac{(Vbottom)^2 }{2}[/tex] = 21.805
(Vb)^2 = 2*21.805
= 43.64
Vb = 6.61m/s
your sister has gained admission into your former school write a letter giving her information about the school and advise her to behave well while in school
Answer:
Find the letter below.
Explanation:
5183 Richmond Avenue,
Houston City,
Texas, U.S.A.
16th November 2020.
Dear Jane,
I received with joy the news of your admission into Texas City High School, my alma mater. This is a big feat and evidence of your hard work and commitment to your academics. To excel in this school, there are certain points which I would like you to note.
First, this is a new phase of your life and it would be important for you to clearly keep your purpose for going to school in mind. Your foremost purpose is to study and gain the needed knowledge that would help you in life.
Secondly, the school is a very sociable environment with lots of interesting activities such as sports, dancing, literary groups, and so many others. Find a group that appeals to you and participate actively in it. Extracurricular activities would help you socialize with your mates and teachers. It would also help you meet interesting people who might later serve some useful purpose in your life after graduation.
The teachers at Texas City High School are very kind and willing to help you excel in your academics and other chosen fields. Be sure to respect them and meet them when you have difficulties in any area of concern. There are also counselors that guide you and help you to remain on the path to excellence.
My dear Jane, life in Texas City High School would not always be rosy as there are bullies in school who would want to intimidate you or get you into fights. Avoid them by all means. Be cordial to all. Report any cases of harassment to the relevant authorities for they are seasoned in handling such matters maturely.
The cafeteria is also an interesting feature of the school. There you can find different kinds of snacks that I know you would love given how much you love snacks. I would only recommend that you make healthier choices so that you do not become overweight or fall ill due to overindulgence in unhealthy meals.
My dear baby girl, be assured of my love and kind wishes as you move on to this next stage of your life. Always know that I am here to give you my advice when you need it. Be a good girl my dear sister. Do have a lovely time at school.
Yours lovingly,
Queen Walters.
The volume of water in a measuring cyclinder is 50 ml .When a piece of stone is immeresed in the cyclinder the volume of water increases to 87.3ml. Calculate volume of stone.
Answer:
37.3ml
Explanation:
87.3 ml-50 ml=37.3ml
Answer:
ok
Explanation:
g
If a person Travels 100 metre due east and then returns to the same place his total displacement is 200. (needed ASAP)
A. True
B. False
Distance is the total path covered by the object
Here, 200 m is the distance covered by the person and NOT the displacement
Displacement of an object is nothing more than the shortest path between the initial and the final point
If the person travelled 100m and came back, his initial and final point will remain the same which means that he will have a displacement of 0 m
A ball of mass 0.600 kg is carefully balanced on a shelf that is 2.20 m above the ground. What is its gravitational potential energy?
Answer:
Explanation:
Gravitational potential energy = mass x height of object x g
g is gravitational acceleration .
Gravitational potential energy of the ball = .600 x 2.20 x 9.8
= 12.936 J .
12.9 J .
Experiment: Gravity
Potential Energy = Force x Distance
To show you how this works, study the following example.
If the washers had a mass of 2 grams, and since the force due to gravity in the metric system is 9.8 m/sec2, the weight would be:
W = mass (kg) x gravity
W = 0.002 kg x 9.8 = 0.0196 Newton's. The Newton (N) is the measure of force (or weight here) in the metric system.
The next phase of the computation is to determine the difference in potential energy between where the washers originally started from and the energy of the new position. If the washers were originally 1 meter from the floor or desktop, and the magnet raised them 1 centimeter, the difference in distance raised will be 1 cm, or 0.01 m. Therefore, the potential energy change will be:
Force x Distance = Potential Energy
(0.0196 N) x (0.01 m) = 0.000196 Nm (or Joules)
The magnet is changing the potential energy of the washers by 0.000196 J, or in scientific notation:
1.96 x 10-4 J.
Answer: the washer would slow down depending on how strong the magnet is even though the gravitational pull is the same. the change would be .6
Explanation: i don't really get it
What is the distance and the displacement of the race car drivers in the Indy 500?
The cars essentially finish where they started, their displacement is close to zero kilometers. However, the winning vehicles have traveled 500 miles.
What is displacement?The separation between two places of an item in motion is known as displacement. Therefore, it relies on both the starting position and the ending position. Displacement is also the shortest distance between the initial and ultimate places.
The distinction between two locations of an object is known as displacement. Because it has both a direction and magnitude, it qualifies as a vector quantity. The symbol for it is an arrow pointing from the first position to the final position. The cars essentially finish where they started, their displacement is close to zero kilometers. However, the winning vehicles have traveled 500 miles.
Therefore, their displacement is close to zero kilometers.
To learn more about displacement, here:
https://brainly.com/question/10919017
#SPJ2
Which possible component of initial energy is caused by molecular motion within a material?
Answer: thermal energy
Answer:
Thermal energy
Explanation:
The internal energy of a system is widely known as thermal energy. Now, thermal energy is also called heat energy and it is an internal energy of a component which is produced when an increase in temperature causes atoms and molecules within the component to move faster and start colliding with one other.
Therefore, the more heat the is applied to the component, the hotter the substance and the more its particles move which in turn leads to a higher thermal energy.
show all work and round to nearest 100th thank you and you will get braineist
Answer: 16.78 miles
Explanation:
distance = rate * time
we're given the rate ( 5 m/s) and we're given the time it takes to get home (1.5 hrs). But notice how the units of hours don't match the seconds of the rate so we need to convert the hours into seconds.
1 hr = 3600 seconds so 1.5 hours = 5400 seconds
now we can plug it in and solve for the distance
distance = (5 m/s) * 5400 seconds
distance = 27000 m
now we have to convert meters to miles, so we divide our answer by 1609 and get 16.78
Are the refractive index and the speed of light in a vacuum direct propotional or inversley
The refractive index of the medium is inversely proportional to the velocity of light in it. As the refractive index of a medium increases, the speed of light going through that medium decreases.
1) When making a digital animation of a person running on a sidewalk in a scene, which parameter would be an initial condition?
-the maximum range of motion in the person's ankle
-the coefficient of friction between the person's foot and the sidewalk
-the position of the person's feet the mass of the person
2)Different models need to include different levels of detail. When a person runs, tiny pieces are lost from the bottom of the shoe. In which situation would it be most important to model the mass of the shoe over time, rather than making it a boundary condition?
-a kinesthesiologist studying the effects of foot position on running speed
-a running shoe company studying how different surfaces affect the life of a shoe tread
-a video game animator producing a scene where a running character slides to a stop
-a video game designer trying to determine how much damage is done to armor over time
Answer:
The position of the person's feet. a running shoe company studying how different surfaces affect the life of a shoe tread
Explanation:
100%
Answer:
1. The position of the person's feet.
2. A running shoe company studying how different surfaces affect the life of a shoe tread
Explanation:
100% correct
A track star runs a 100m race in 12s what is the velocity of the runner?
Answer:
8.33 m/s
Explanation:
v=d/s, velocity = displacement/ time
If a car has a centripetal acceleration of 7m/s2 over a radius of 7m. How fast is it going
a. 7 m/s
b 1 m/s
с o m/s
d 49 m/s
Answer:
7 m/s (agrees with answer a in your list)
Explanation:
Recall that the centripetal acceleration is defined by the square of the tangential velocity divided by the radius of the rotational motion:
[tex]a_c=\frac{v_t^2}{R}[/tex]
then the tangential velocity is extracted from here as:
[tex]a_c=\frac{v_t^2}{R} \\v_t^2=a_c * R\\v_t=\sqrt{a_c * R}[/tex]
in our case, this becomes:
[tex]v_t=\sqrt{7*7} = 7 \,\,m/s[/tex]
You want to lean your dad's ladder on a smooth wall. If the mass of ladder is 4.42 kg and coefficient
of friction of the floor is 0.53, what is the minimum angle, theta-min at which the ladder does nofip? What
do you think the maximum angle theta-max could be? Sketch and label your free body diagram.
(5 marks)
Answer:
angle minimum θ = 41.3º
Explanation:
For this exercise let's use Newton's second law in the condition of static equilibrium
N - W = 0
N = W
The rotational equilibrium condition, where we place the axis of rotation on the wall
We assume that counterclockwise rotations are positive
fr (l sin θ) - N (l cos θ) + W (l/2 cos θ) = 0
the friction force formula is
fr = μ N
fr = μ W
we substitute
μ m g l sin θ - m g l cos θ + mg l /2 cos θ = 0
μ sin θ - cos θ + ½ cos θ= 0
μ sin θ - ½ cos θ = 0
sin θ / cos θ = 1/2 μ
tan θ = 1/2 μ
θ = tan⁻¹ (1 / 2μ)
θ = tan⁻¹ (1 (2 0.57))
θ = 41.3º
What is the acceleration of gravity, in m/s2, on the surface (or outer limit) of Venus? The mass of Venus is 4.87 1024 kg and its radius is 6.05 106 m.
Answer:
8.9 m/[tex]s^{2}[/tex]
Explanation:
From Newton's law of universal gravitation,
F = [tex]\frac{GMm}{R^{2} }[/tex] .............. 1
and from Newton's second law of motion,
F = mg ........... 2
Equating the two expression,
mg = [tex]\frac{GMm}{R^{2} }[/tex]
g = [tex]\frac{GM}{R^{2} }[/tex]
Given that: mass of Venus = 4.87 x [tex]10^{24}[/tex] Kg, radius = 6.05 x [tex]10^{6}[/tex] and G = 6.67 x [tex]10^{-11}[/tex] N[tex]m^{2} Kg^{-2}[/tex]
Thus;
g = [tex]\frac{6.67*10^{-11}*4.87*10^{24} }{(6.05*10^{6} )^{2} }[/tex]
= [tex]\frac{3.24829*10^{14} }{3.66025*10^{13} }[/tex]
= 8.87450
g = 8.9 m/[tex]s^{2}[/tex]
the acceleration of gravity on the surface of Venus is 8.9 m/[tex]s^{2}[/tex].
10points asap
A force of 30 N acts upon a 7 kg block. Calculate its acceleration.
Determine the force of gravitational attraction between a 92 kg student and a 550 g slice of pizza that are 25 cm apart
Answer:
F = 5.4 x 10⁻⁸ N
Explanation:
The gravitational force of attraction between two objects is given by Newton's Gravitational Law as follows:
F = Gm₁m₂/r²
where,
F = Gravitational Force = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
m₁ = mass of student = 92 kg
m₂ = mass of pizza slice = 550 g = 0.55 kg
r = distance between student and pizza slice = 25 cm = 0.25 m
Therefore,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(92 kg)(0.55 kg)/(0.25 m)²
F = 5.4 x 10⁻⁸ N
Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө
I don't know if there is other given information that's missing here, so I'll try to fill in the gaps as best I can.
Let m be the mass of the object and v₀ its initial velocity at some distance x up the plane. Then the velocity v of the object at the bottom of the plane can be determined via the equation
v² - v₀² = 2 a x
where a is the acceleration.
At any point during its motion down the plane, the net force acting on the object points in the same direction. If friction is negligible, the only forces acting on the object are due to its weight (magnitude w) and the normal force (mag. n); if there is friction, let f denote its magnitude and let µ denote the coefficient of kinetic friction.
Recall Newton's second law,
∑ F = m a
where the symbols in boldface are vectors.
Split up the forces into their horizontal and vertical components. Then by Newton's second law,
• net horizontal force:
∑ F = n cos(θ + 90º) = m a cos(θ + 180º)
→ - n sin(θ) = - m a cos(θ)
→ n sin(θ) = m a cos(θ) ……… [1]
• net vertical force:
∑ F = n sin(θ + 90º) - w = m a sin(θ + 180º)
→ n cos(θ) - m g = - m a sin(θ)
→ n cos(θ) = m (g - a sin(θ)) ……… [2]
where in both equations, a is the magnitude of acceleration, g = 9.80 m/s², and friction is ignored.
Then by multiplying [1] by cos(θ) and [2] by sin(θ), we have
n sin(θ) cos(θ) = m a cos²(θ)
n cos(θ) sin(θ) = m (g sin(θ) - a sin²(θ))
m a cos²(θ) = m (g sin(θ) - a sin²(θ))
a cos²(θ) + a sin²(θ) = g sin(θ)
a = g sin(θ)
and so the object attains a velocity of
v = √(v₀² + 2 g x sin(θ))
If there is friction to consider, then f = µ n, and Newton's second law instead gives
• net horizontal force:
∑ F = n cos(θ + 90º) + f cos(θ) = m a cos(θ + 180º)
→ - n sin(θ) + µ n cos(θ) = - m a cos(θ)
→ n sin(θ) - µ n cos(θ) = m a cos(θ) ……… [3]
• net vertical force:
∑ F = n sin(θ + 90º) + f sin(θ) - w = m a sin(θ + 180º)
→ n cos(θ) + µ n sin(θ) - m g = - m a sin(θ)
→ n cos(θ) + µ n sin(θ) = m g - m a sin(θ) ……… [4]
Then multiply [3] by cos(θ) and [4] by sin(θ) to get
- n sin(θ) cos(θ) + µ n cos²(θ) = - m a cos²(θ)
n cos(θ) sin(θ) + µ n sin²(θ) = m g sin(θ) - m a sin²(θ)
and adding these together gives
µ n (cos²(θ) + sin²(θ)) = m g sin(θ) - m a (cos²(θ) + sin²(θ))
µ n = m g sin(θ) - m a
m a = m g sin(θ) - µ n
m a = m g sin(θ) - µ m g cos (θ)
a = g (sin(θ) - µ cos (θ))
and so the object would instead attain a velocity of
v = √(v₀² + 2 g x (sin(θ) - µ cos (θ)))
You have a source of energy containing 21 gj of energy at 600k how much this energy can be converted to work when rejecting heat to the atmosphere at 27°C?
Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J
You use an electron microscope in which the matter wave associated with the electron beam has a wavelength of 0.0173 nm. What is the kinetic energy of an electron in the beam, expressed in electron volts?
Answer:
The kinetic energy of an electron in the beam is 5.04 keV.
Explanation:
We need to find the velocity of the electron by using the De Broglie wavelength:
[tex] \lambda = \frac{h}{mv} [/tex]
Where:
λ: is the wavelength = 0.0173 nm
v: is the velocity
m: is the electron's mass = 9.1x10⁻³¹ kg
h: is the Planck constant = 6.62x10⁻³⁴ J.s
[tex] v = \frac{h}{m\lambda} = \frac{6.62 \cdot 10^{-34} J.s}{9.1 \cdot 10^{-31} kg*0.0173 \cdot 10^{-9} m} = 4.21 \cdot 10^{7} m/s [/tex]
Now, we can find the kinetic energy:
[tex] E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}9.1 \cdot 10^{-31} kg*(4.21 \cdot 10^{7} m/s)^{2} = 8.06 \cdot 10^{-16} J*\frac{1 eV}{1.6 \cdot 10^{-19} J} = 5038 eV = 5.04 keV [/tex]
Therefore, the kinetic energy of an electron in the beam is 5.04 keV.
I hope it helps you!
Show the relation among MA, VR and n.
Answer:
good luck!!! sorry I just needed the points xoxo
Explanation:
umm yeah no sorry I tried
A ball is launched from ground level at 20 m/s at an angle of 40° above the
horizontal. A) How long the ball is in the air? B)What is the maximum
height the ball can reach?
(a) The ball's height y at time t is given by
y = (20 m/s) sin(40º) t - 1/2 g t ²
where g = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve y = 0 for t :
0 = (20 m/s) sin(40º) t - 1/2 g t ²
0 = t ((20 m/s) sin(40º) - 1/2 g t )
t = 0 or (20 m/s) sin(40º) - 1/2 g t = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 g t
t = (40 m/s) sin(40º) / g
t ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration g. So
0² - ((20 m/s) sin(40º))² = 2 (-g) y
where y in this equation refers to the maximum height of the ball. Solve for y :
y = ((20 m/s) sin(40º))² / (2g)
y ≈ 8.4 m
If you are pushing 200 kg of textbooks with acceleration of 2m/s2, how much net force are you exerting on the books? (Fnet=ma)
( There is more than one answer)
200N
100N
400Kg
400N
400 kg.m/s2
Explanation:
m=200kg
a=2m/s2
F=ma
F=200kg×2m/s2
=400kg.m/s2 or 400N
Given that "mass" multiply by constant “k” is equal to "energy" divided by
“height”. Determine, by using dimensions of each, which physical quantity is
represented by “k”?
Answer:
K must be an acceleration
Explanation:
Recall that unit of energy consists the following dimensions:
mass * length^2 / time^2
then if we have : mass * K = energy / length
then the units of K can be obtained by replacing the units of energy by (mass * length^2 / time^2), and then dividing by units of mass:
K = (mass * length^2 / time^2)/ (length * mass)
where we cancel out units of mass, and one unit of length resulting in units of length divided units of time squared. and such are units of acceleration. Therefore K must be an acceleration.
If 500 cal of heat are added to a gas, and the gas expands doing 500 J of work on its surroundings, what is the change in the internal energy of the gas?
Answer:
The change in the internal energy of the gas 1,595 J
Explanation:
The first law of thermodynamics establishes that in an isolated system energy is neither created nor destroyed, but undergoes transformations; If mechanical work is applied to a system, its internal energy varies; If the system is not isolated, part of the energy is transformed into heat that can leave or enter the system; and finally an isolated system is an adiabatic system (heat can neither enter nor exit, so no heat transfer takes place.)
This is summarized in the expression:
ΔU= Q - W
where the heat absorbed and the work done by the system on the environment are considered positive.
Taking these considerations into account, in this case:
Q= 500 cal= 2,092 J (being 1 cal=4.184 J) W=500 JReplacing:
ΔU= 2,092 J - 500 J
ΔU= 1,592 J whose closest answer is 1,595 J
The change in the internal energy of the gas 1,595 J
Just some Naruto couples having a Boxing Match.
Who do you think will win?! Naruto and Hinata or Pain and Konan?!
Answer:
naruto and hinata
Explanation:
there’s a tornado warning where i live rn
Answer:
same
Explanation:
aww good luck, i hope u n ur family turn out okkk
When you sweat, what is the external stimuli? I need help asap.
Answer:
An External Stimulus is a stimulus that comes from outside an organism. Examples: You feel cold so you put on a jacket. When you sweat, the external stimulus is either you're anxious or hot.
Explanation:
hope it helps! <3
The batter swings his bat 1.8 meters in 0.1 seconds. How fast is his bat speed in meters per second?
Answer:
18 m/s
Explanation:
1.8 meters / 0.1 seconds = 18 m/s
A physics professor demonstrates the Doppler effect by tying a 600 Hz sound generator to a 1.0-m-long rope and whirling it around her head in a horizontal circle at 100 rpm. Assume the room temperature is 20 degrees Celsius. What are the highest and lowest frequencies heard by a student in the classroom?
Answer:Highest frequency =618.89Hz
Lowest frequency=582.22Hz
Explanation:
The linear velocity of a sound generator is related to angular velocity and is given as
Vs = rω where
r = the radius of circular path = 1.0 m
ω is the angular velocity of the sound generator. = 100 rpm
1 rev/min = 0.10472 rad/s
100rpm =10.472 rad/ s
Vs = rω
= 1m x 10.472rad/ s= 10.472m/s
A) Highest frequency heard by a student in the classroom = Maximum frequency. Using the Doppler effect formulae,
f max = (v/ v-vs) fs
Where , v is the speed of the sound in air at 20 degrees celcius =
343 metres per second
vs is the linear velocity of the sound generator=10.472m/s
fs is the frequency of the sound generator= 600 Hz
f max = (343/ 343 - 10.472) x 600
=343/332.528) x600
=618.89Hz
B) Lowest frequency heard by a student in the classroom = Minimum frequency
f min = (v/ v+vs) fs
(343/ 343 + 10.472) x 600
=343/353.472) x 600
=582.22hz