Friction is a force that acts in an ___________ direction of movement.
a) similar
b) opposite
c) parallel
d) west

Answers

Answer 1

Answer:

the answer is opposite.

plz mark brainliest

Explanation:


Related Questions

A dart is inserted into a spring-loaded dart gun by pushing the spring in by a distance . For the next loading, the spring is compressed a distance . How much faster does the second dart leave the gun compared with the first

Answers

Complete question is;

A dart is inserted into a spring - loaded dart gun by pushing the spring in by a distance x. For the next loading, the spring is compressed a distance 2x. How much faster does the second dart leave the gun compared to the first?

Answer:

The second dart leaves the gun two times faster than the first one.

Explanation:

If we assume there was no energy loss during the spring - dart energy transfer, we can easily apply the principle of conservation of energy. So;

Potential energy = kinetic energy

Thus;

½kx² = ½mv²

Making velocity "v" the subject, we have;

v = √(kx²/m)

Since the initial distance is "x", thus initial launching velocity is;

v1 = √(kx²/m)

Since next distance is 2x, thus, second launch velocity is;

v2 = √(k(2x)²/m)

Expanding, we have;

v2 = √(4kx²/m)

v2 = 2√(kx²/m)

Comparing this to the one gotten for v1 earlier, we can see that it is double v1.

So, v2 = 2v1

Hence, The second dart leaves the gun two times faster than the first one.

A CD is spinning on a CD player. In 220 radians, the cd has reached an angular speed of 92 r a d s by accelerating with a constant acceleration of 14 r a d s 2 . What was the initial angular speed of the CD

Answers

Answer:

The initial angular speed is [tex]w_i = 48 \ rad/s[/tex]

Explanation:

From the question we are told that

   The angular displacement is  [tex]\theta = 220 \ rad[/tex]

    The angular speed is  [tex]w_f = 92 \ rad/s[/tex]

    The acceleration is  [tex]\alpha = 14 \ rad/s^2[/tex]

Generally the initial angular speed can be evaluated as

     [tex]w_f ^2 = w_i ^2 + 2 * \alpha * \theta[/tex]

=>  [tex]w_i ^2 = w_f ^2 - 2 * \alpha * \theta[/tex]

substituting values

=>     [tex]w_i ^2 = 92 ^2 - 2 * 14 * 220[/tex]

=>      [tex]w_i ^2 = 2304[/tex]

=>     [tex]w_i = 48 \ rad/s[/tex]

Use the Bohr model to address this question. When a hydrogen atom makes a transition from the 5 th energy level to the 2nd, counting the ground level as the first,
A. What is the energy E of the emitted photon in electron volts?、
B. What is the wavelength in nanometers of the emitted photon?
C. What is the radius of the hydrogen atom in nanometers in its initial 5th energy level?

Answers

Answer:

A. 2.82 eV

B. 439nm

C. 59.5 angstroms

Explanation:

A. To calculate the energy of the photon emitted you use the following formula:

[tex]E_{n1,n2}=-13.4(\frac{1}{n_2^2}-\frac{1}{n_1^2})[/tex]     (1)

n1: final state = 5

n2: initial state = 2

Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

[tex]E_{5,2}=-13.6(\frac{1}{5^2}-\frac{1}{2^2})=2.82eV[/tex]

B. The energy of the emitted photon is given by the following formula:

[tex]E=h\frac{c}{\lambda}[/tex]   (2)

h: Planck's constant = 6.62*10^{-34} kgm^2/s

c: speed of light = 3*10^8 m/s

λ: wavelength of the photon

You first convert the energy from eV to J:

[tex]2.82eV*\frac{1J}{6.242*10^{18}eV}=4.517*10^{-19}J[/tex]

Next, you use the equation (2) and solve for λ:

[tex]\lambda=\frac{hc}{E}=\frac{(6.62*10^{-34} kg m^2/s)(3*10^8m/s)}{4.517*10^{-19}J}=4.39*10^{-7}m=439*10^{-9}m=439nm[/tex]

C. The radius of the orbit is given by:

[tex]r_n=n^2a_o[/tex]   (3)

where ao is the Bohr's radius = 2.380 Angstroms

You use the equation (3) with n=5:

[tex]r_5=5^2(2.380)=59.5[/tex]

hence, the radius of the atom in its 5-th state is 59.5 anstrongs

A) The energy E of the emitted photon in electron volts is; E = 2.856 eV

B) The wavelength in nanometers of the emitted photon is; λ = 434.4nm

C) The radius of the hydrogen atom in nanometers in its initial 5th energy level is; rₙ = 1.323 nm

A) Formula for the energy E of the emitted photons is;

E = -13.6([tex]\frac{1}{n_{2}^2} - \frac{1}{n_{1}^2}[/tex])

We are given;

n₂ = 5

n₁ = 2

Thus;

E = -13.6([tex]\frac{1}{5^2} - \frac{1}{2^2}[/tex])

E = 2.856 eV

B) The formula for the wavelength is;

λ = hc/E

where;

h is Planck's constant = 6.626 × 10⁻³⁴ m².kg/s

c is speed of light = 3 × 10⁸ m/s

E is energy of photon

λ is wavelength of the photon

Earlier we saw that E = 2.856 eV. Converting to Joules gives;

E = 4.5758 × 10⁻¹⁹ J

Thus;

λ = (6.626 × 10⁻³⁴ × 3 × 10⁸)/(4.5758 × 10⁻¹⁹)

λ = 4.344 × 10⁻⁷ m

Converting to nm gives;

λ = 434.4nm

C) Formula for the radius of the hydrogen atom is;

rₙ = n²a₀

where;

a₀ is bohr's radius = 5.292 × 10⁻¹¹ m

n = 5

Thus;

rₙ = 5² × 5.292 × 10⁻¹¹

rₙ = 1.323 × 10⁻⁹

rₙ = 1.323 nm

Read more at; https://brainly.com/question/17227537

A trap-jaw ant snaps its mandibles shut at very high speed, good for catching small prey. But these ants also slam their mandibles into the ground; the resulting force can launch the ant into the air for a quick escape. If a 12 mg ant hits the ground with an average force of 47 mN for a time of 0.13 ms, at what speed will it leave the ground?

Answers

Answer:

FInal speed (v) = 0.509 m/s (Approx)

Explanation:

Given:

Mass of ant (m) = 12 mg

Force (f) = 47 N

Time taken (t) = 0.13 ms

Find:

FInal speed (v) = ?

Computation:

Initial velocity (u) = 0

Impulse = change in momentum

Force × TIme = change in momentum

47 × 0.13 = mv - mu

6.11 = 12 (V)

FInal speed (v) = 0.509 m/s (Approx)

A mechanic applies a force of 60N at a distance of 80 cm from the pivot on a wheel wrench. What is the size of the moment?

Answers

Answer:

48 Nm

Explanation:

Moment, or torque, is the cross product of radius and force vectors.

τ = r × F

τ = (0.80 m) (60 N)

τ = 48 Nm

A single loop of wire with an area of 0.0820 m2 is in a uniform magnetic field that has an initial value of 3.80 T, is perpendicular to the plane of the loop, and is decreasing at a constant rate of 0.220 T/s .

Required:
a. What emf is induced in this loop?
b. If the loop has a resistance of 0.600Ω, find the current induced in the loop.

Answers

Answer:

a) emf = 0.01804 V

b) I = 0.03 A

Explanation:

a) The emf is calculated by using the following formula:

[tex]|emf|=|\frac{d\Phi_B}{dt}|=|\frac{d(A\cdot B)}{dt}|[/tex] [tex]=A|\frac{dB}{dt}|[/tex]

A: area of the loop = 0.0820m^2

B: magnitude of the magnetic field

dB/dt: change of the magnetic field, in time: 0.220 T/s

Where ФB is the magnetic flux, the surface vector and magnetic vector are perpendicular between them, and the area A is constant.

You replace the values of A and dB/dt in the equation (1):

[tex]|emf|=(0.082m^2)(0.220T/s)=0.01804V[/tex]

b) The current in the loop is:

[tex]I=\frac{emf}{R}[/tex]

R: resistance of the loop = 0.600Ω

[tex]I=\frac{0.01804V}{0.600\Omega}=0.03A=30mA[/tex]

a.  The emf induced in this loop is 18.04mV.

b. The current induced in the loop is 30.06mA.

a. We know that,

                        [tex]flux(\phi)=B*A[/tex]

Where B is magnetic field and A is the area.

  [tex]emf=\frac{d\phi}{dt}=A*\frac{dB}{dt}[/tex]

Given that,  Area , [tex]A=0.0820m^{2},B=3.80T,\frac{dB}{dt}=0.220T/s[/tex]

Substituting all values in above equation.

  [tex]emf=0.0820*0.220=0.01804V=18.04mV[/tex]

b. Resistance, [tex]R=0.600ohm[/tex]

  Current induced in the loop is,

                [tex]I=\frac{emf}{R}=18.04/0.6=30.06mA[/tex]

Hence, the emf induced in this loop is 18.04mV.

The current induced in the loop is 30.06mA.

Learn more:

https://brainly.com/question/15477464

g The potential energy of a pair of hydrogen atoms separated by a large distance x is given by U(x)=−C6/x6, where C6 is a positive constant. Part A What is the force that one atom exerts on the other? Express your answer in terms of C6 and x. Fx = nothing Request Answer Part B Is this force attractive or repulsive? Is this force attractive or repulsive? attractive repulsive

Answers

Answer:

[tex]F_x = -\frac{6 C_6}{2^7}[/tex]

Attractive

Explanation:

Data provided in the question

The potential energy of a pair of hydrogen atoms given by [tex]\frac{C_6}{X_6}[/tex]

Based on the given information, the force that one atom exerts on the other is

Potential energy μ = [tex]\frac{C_6}{X_6}[/tex]

Force exerted by one atom upon another

[tex]F_x = \frac{\partial U}{\partial X} = \frac{\partial}{\partial X} (-\frac{C_6}{X^6})[/tex]

or

[tex]F_x = \frac{\partial}{\partial X} (\frac{C_6}{X^6})[/tex]

or

[tex]F_x = -\frac{6 C_6}{2^7}[/tex]

As we can see that the [tex]C_6[/tex] comes in positive and constant which represents that the force is negative that means the force is attractive in nature

An object with a mass of 1500 g (grams) accelerates 10.0 m/s2 when an
unknown force is applied to it. What is the amount of the force





Answers

Answer:

15N

Explanation:

F=ma

m=1500g = 1.5kg

a=10m/s2

1.5×10=15 N

Answer:15000gms^-2

Explanation:

F=m×a

m=1500g, a=10ms^-2

F=(1500×10)gms^-2

F=15000gms^-2

Why do some nucleus emit electrons?

Answers

Answer:

In beta-minus decay, a neutron breaks down to a proton and an electron, and the electron is emitted from the nucleus. In beta-plus decay, a proton breaks down to a neutron and a positron, and the positron is emitted from the nucleus.

Explanation:

Hope this helps!

Which statement best describes one way that the molecules differ from atoms? a. A molecule can contain a nucleus about which its electrons orbit b. A molecule can contain two atoms of the same element. C. Only a molecule can be the smallest particle of a certain element. d. Only a molecule can be broken down into two or more different elements.

Answers

B and D are both true statements. I'm not comfortable saying that either one is better than the other one.

The statement that best describes one way that molecules differ from atoms is a molecule can contain two atoms of the same element, and only a molecule can be broken down into two or more different elements. The correct options are b and d.

What are atoms and molecules?

According to science, an atom is the smallest component of an element that can exist freely or not. A molecule, on the other hand, is the smallest component of a chemical and is made up of a group of atoms linked together by a bond.

A molecule is the smallest component of a substance that has the chemical properties of the compound.

The term "independent molecule" is not commonly used to refer to atoms and complexes linked by non-covalent interactions such as hydrogen or ionic bonds. Molecules are common constituents of matter.

Therefore, the correct options are b and d.

To learn more about atoms, refer to the link:

https://brainly.com/question/25617532

#SPJ2

what is the speed of light in quartz

Answers

Answer:

1.95 x 10^8 m/s.

Explanation:

Answer:

the answer is 1.95 x 10^8 m/s

Explanation:

The brakes of a car are applied to give it an acceleration of -2m/s^2. The car comes to a stop in 3s. What was its speed when the brakes were applied?

Answers

Answer:

So if its acceleration is -2m/s^2 that means every second the initial velocity would be subtracted by 2. So since it took 3 seconds 2*3=6. The initial velocity was 6 m/s

A worker with spikes on his shoes pulls on rope that is attached to a box that is resting on a flat, frictionless frozen lake. The box has mass m, and the worker pulls with a constant tension T at an angle θ = 40 ∘ above the horizontal. There is a strong headwind on the lake, which produces a horizontal force Fw that is pointed in the opposite direction than the box is being pulled. Draw a free-body diagram for this system. Assume that the worker pulls the box to the right. If the wind force has a magnitude of 30 N, with what tension must the worker pull in order to move the box at a constant velocity?

Answers

Answer:

a

The free body diagram is shown on the first uploaded image

b

The tension on the rope is  [tex]T=39.16 \ N[/tex]  

Explanation:

From the  question we are told that

    The mass of the box is  m

    The tension on the box is  T

     The angle at which it is pulled is  [tex]\theta = 40^o[/tex]

     The force produced by the strong head wind is [tex]Fw = 30 \ N[/tex]

At equilibrium the net force acting on the block along the horizontal axis is zero i.e

     [tex]Tcos \theta -F_w = 0[/tex]

substituting values

     [tex]Tcos (40) -30 = 0[/tex]

     [tex]Tcos (40) = 30[/tex]

     [tex]T(0.76604)) = 30[/tex]

     [tex]T=39.16 \ N[/tex]      

You are helping your friend prepare for the next skateboard exhibition by determining if the planned program will work. Your friend will take a running start and then jump onto a heavy-duty 13-lb stationary skateboard. The skateboard will glide in a straight line along a short, level section of track, then up a curved concrete wall. The goal is to reach a height of at least 10 feet above the starting point before coming back down the slope. Your friend's maximum running speed to safely jump on the skateboard is 24 feet/second. Your friend weighs 155-lbs. What is the height hf that your friend will reach according to his plan?

Answers

Answer:

  8.3 feet

Explanation:

The kinetic energy of the system on the ground is ...

  KE = Σ(1/2)(mv^2) = (1/2)(155)(24^2) +(1/2)(13)(0^2) = 44640 lb·ft²/s²

The potential energy at the highest point is the same:

  PE = mgh

  44640 = (155 +13)(32)h

  h = 44640/5376 = 8.30 . . . . feet

_____

We haven't worried too much about the conversion between pounds mass and pounds force. Whatever factor may be involved will divide out when computing the maximum height. We have used g=32 ft/s².

__

To achieve a 10 ft height, the running speed would need to be 26.34 ft/s, about 10% higher.

g A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobber, and from the bottom hangs a 10 gram lead weight. The density of lead is 11.3 g/cm3. What fraction of the bobber's volume is submerged, as a percent of the total volume

Answers

Answer:

Explanation:

total weight acting downwards

= 3g + 10g

13 g

volume of lead = 10 / 11.3 = .885 cm³

Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber  = v x 1 x g

Buoyant force on lead =  .885 x 1 x g

total buoyant force = vg + .885 g

For floating

vg + .885 g  = 13 g

v = 12.115 cm³

total volume of bobber

= 4/3 x 3.14 x 2³

= 33.5 cm³

fraction of volume submerged

= 12.115  / 33.5

= .36  

= 36 %

The fraction of the bobber's volume submerged as a percent of the total volume is 36.2 %.

The given parameters;

diameter of the bobber, d = 4 cmmass of the bobber, m = 3 gmass of the lead, m = 10 gdensity of the lead, ρ = 11.3 g/cm³

The volume of the bobber is calculated as follows;

[tex]V = \frac{4}{3} \pi \times r^3\\\\V = \frac{4}{3} \pi \times (2)^3\\\\V = 33.52 \ cm^3[/tex]

The buoyant force experienced by the bobber due to the volume submerged is calculated as follows;

[tex]F _b= \rho Vg\\\\F_b = 1 \times V \times g\\\\F_b = Vg[/tex]

The volume of the lead is calculated as follows;

[tex]V = \frac{mass}{density} \\\\V = \frac{10}{11.3} \\\\V = 0.885 \ cm^3[/tex]

The buoyant force experienced by the lead due to the volume submerged is calculated as follows

[tex]F_b = \rho Vg\\\\F_b = 0.885 g[/tex]

The total buoyant force is calculated as;

[tex]Vg + 0.885g = (3+ 10)g\\\\g(V + 0.885) = 13g\\\\V+ 0.885 = 13\\\\V = 13 -0.885\\\\V = 12.12 \ cm^3[/tex]

The fraction of the bobber's volume submerged as a percent of the total volume is calculated as follows;

[tex]= \frac{12.12}{33.52} \times 100\%\\\\= 36.2 \ \%[/tex]

Learn more here:https://brainly.com/question/17009786

At a time when mining asteroids has become feasible, astronauts have connected a line between their 3220-kg space tug and a 6240-kg asteroid. They pull on the asteroid with a force of 362 N. Initially the tug and the asteroid are at rest, 311 m apart. How much time does it take for the ship and the asteroid to meet

Answers

-- F = m a ... ==>  a = F/m

-- The tension in the rope is 362 N.  That same force acts on the asteroid and on the tug, pulling them together.

-- The asteroid's acceleration is 362N / 6240 kg = 0.058 m/s², headed for a point on the rope somewhere between the asteroid and the tug.

-- The tug's acceleration is 362 N / 3220 kg = 0.112 m/s², also headed for a point on the rope somewhere between the tug and the asteroid.

-- So now we have a gap between them, initially 311 m long, closing with a speed that starts at zero and accelerates at  0.170 m/s² .

-- D = (1/2) a T²

311 m = (1/2) (0.170 m/s²) (T²)

T²  =  311 m / 0.085 m/s²

T = √(311/0.085)  seconds

T = 60.41 seconds

The answer I get is so durn near 60 seconds (1 minute) that it suggests two things to me:  ==> That's where the weird numbers of 362N and 311m came from, and ==> there's a good chance that my answer is correct.

Note:  It's important to me that you know that 5 points for this one is really cheap and chintzy, and the reason I decided to try it was only to see whether I could.

An object, with mass 70 kg and speed 21 m/s relative to an observer, explodes into two pieces, one 4 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame

Answers

Answer:

K = 3.9 kJ

Explanation:

The kinetic energy ([tex]K_{T}[/tex]) added is given by the difference between the final kinetic energy and the initial kinetic energy:

[tex] K_{T} = K_{f} - K_{i} [/tex]  

The initial kinetic energy is:

[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} [/tex]

Where m₁ is the mass of the object before the explosion and v₁ is its velocity

[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} = \frac{1}{2}70 kg*(21 m/s)^{2} = 1.54 \cdot 10^{4} J [/tex]

Now, the final kinetic energy is:

[tex] K_{f} = \frac{1}{2}m_{2}v_{2}^{2} + \frac{1}{2}m_{3}v_{3}^{2} [/tex]

Where m₂ and m₃ are the masses of the 2 pieces produced by the explosion and v₁ and v₂ are the speeds of these pieces

Since m₂ is 4 times as massive as m₃ and v₃ = 0, we have:

[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}v_{2}^{2} + \frac{1}{2}*\frac{1}{5}m_{1}*0 [/tex]   (1)          

By conservation of momentum we have:

[tex] p_{i} = p_{f} [/tex]

[tex] m_{1}v_{1} = m_{2}v_{2} + m_{3}v_{3} [/tex]  

[tex] m_{1}v_{1} = \frac{4}{5}m_{1}v_{2} + \frac{1}{5}m_{1}*0 [/tex]

[tex] v_{2} = \frac{5}{4}v_{1} [/tex]     (2)

By entering (2) into (1) we have:

[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}(\frac{5}{4}v_{1})^{2} = \frac{1}{2}*\frac{4}{5}70 kg(\frac{5}{4}*21 m/s)^{2} = 1.93 \cdot 10^{4} J [/tex]  

Hence, the kinetic energy added is:

[tex] K_{T} = K_{f} - K_{i} = 1.93 \cdot 10^{4} J - 1.54 \cdot 10^{4} J = 3.9 \cdot 10^{3} J [/tex]  

Therefore, the kinetic energy added to the system during the explosion is 3.9 kJ.

I hope it helps you!

A uniform thin spherical shell of mass M=2kg and radius R=0.23m is given an initial angular speed w=18.3rad/s when it is at the bottom of an inclined plane of height h=3.5m, as shown in the figure. The spherical shell rolls without slipping. Find wif the shell comes to rest at the top of the inclined plane. (Take g-9.81 m/s2, Ispherical shell = 2/3 MR2 ).Express your answer using one decimal place.

Answers

Answer:

47.8rad/s

Explanation:

For energy to be conserved.

The potential energy sustain by the object would be equal to K.E

P.E = m× g× h = 2 × 9.81× 3.5= 68.67J

Now K.E = 1/2 × I × (w1^2 - w0^2)

I = 2/3 × M × R2

= 2/3 × 2 × (0.23)^2= 0.0705

Hence

W1 = final angular velocity

Wo = initial angular velocity

From P.E = K.E we have;

68.67J = 1/2 × 0.0705 × (w1^2 - w0^2)

(w1^2 - w0^2) = 1948.09

W1^2 = 1948.09 + (18.3^2)

W1^2=2282.98

W1 = √2282.98

=47.78rad/s

= 47.8rad/s to 1 decimal place.

You are watching an object that is moving in SHM. When the object is displaced 0.560 m to the right of its equilibrium position, it has a velocity of 2.45 m/s to the right and an acceleration of 8.60 m/s2 to the left. Part A How much farther from this point will the object move before it stops momentarily and then starts to move back to the left

Answers

Answer:

2.95m

Explanation:

The farthest distance the object can move is the radius of the circle of which the Simple harmonic motion is assumed to be a part

But V = w× r; where V is velocity,

w is angular velocity and r is radius.

Also,

a= w2r; where a is linear acceleration

but a = v× r ; by comparing both equations

Hence r = a/v =8.6/2.45 =3.51m

But the horizontal distance of the motion is given by:

X = rcosx ; where x is the angle

X is the distance covered.

We know that the maximum value of cos x is 1 which is 0°

When the object moves in a fashion directly parallel to an horizontal distance, maximum distance would be reached and hence:

X = r=3.51m

Meaning the object needs to travel 3.51-0.56=2.95m further.

Note: the acceleration of the motion is constant whether it is swinging towards the left or right.

When the object is displaced 0.560 m to the right of its equilibrium position, it has a velocity of 2.45 m/s to the right and an acceleration of 8.60 m/s2 to the left and the amplitude of motion A = 0.732 m.

What is Amplitude of motion?

The distance between the central and extreme points for a moving particle is known as the amplitude of motion.

The given data to find the amplitude of motion,

Object displaced = 0.560 m

Velocity = 2.45 m/s

Acceleration = 8.60 m/s²

Starting with sine:

x(t) = Asin(ωt)

so that t = 0, x = 0

x(t) = 0.56 m = Asin(ωt)

v(t) = x(t)'= 2.45 m/s = Aωcos(ωt)

a(t) = v(t)'= -8.60 m/s² = -Aω²sin(ωt)

x(t) / a(t) = Asin(ωt) / -Aω²sin(ωt)

0.56m / -8.60 m/s² = -1 / ω²

ω² = 15.3571 rad^2/s^2

ω = 3.91881 rad/s  

x(t) / v(t) = Asin(ωt) / Aωcos(ωt)

0.560m / 2.45m/s = tan(3.91t) / 3.91rad/s

0.8937= tan(3.91t)

t = 0.176 s  

x(0.176) = Asin(3.59×0.176)

0.65 m= Asin(0.631)

A = 0.732 m is the amplitude of motion.

To know more about Amplitude of motion,

https://brainly.com/question/12967589

#SPJ2

Part A The potential energy for a certain mass moving in one dimension is given by U(x) = (2.0 J/m3)x3 - (15 J/m2)x2 + (36 J/m)x - 23 J. Find the location(s) where the force on the mass is zero. The potential energy for a certain mass moving in one dimension is given by U(x) = (2.0 J/m3)x3 - (15 J/m2)x2 + (36 J/m)x - 23 J. Find the location(s) where the force on the mass is zero. 3.0 m, 5.0 m 4.0 m, 5.0 m 2.0 m, 3.0 m 1.0 m

Answers

Answer:

The location are [tex]x_1 = 2 \ and \ x_2 = 3[/tex]

Explanation:

From the question we are told that

    The potential energy is  [tex]U(x) = (2.0 \ J/m^3) * x^3 - (15 \ J/m) * x^2 + (36 \ J/m) * x - 23 \ J[/tex]

The force on the mass can be mathematically evaluated as  

      [tex]F = - \frac{d U(x)}{d x } = -( 6 x^2 - 30x +36)[/tex]

The negative sign shows that the force is moving in the opposite  direction of the potential energy

       [tex]F = - 6 x^2 + 30x - 36[/tex]

At critical point

      [tex]\frac{d U(x)}{dx} = 0[/tex]

So  

     [tex]- 6 x^2 + 30x - 36 = 0[/tex]

     [tex]- x^2 + 5x - 6 = 0[/tex]

Using quadratic equation formula to solve this we have that

       [tex]x_1 = 2 \ and \ x_2 = 3[/tex]

               

Calculate the energy released by the electron-capture decay of 5727Co. Consider only the energy of the nuclei (ignore the energy of the surrounding electrons). The following masses are given:
5727Co: 56.936296u
5726Fe: 56.935399u
Express your answer in millions of electron volts (1u=931.5MeV/c2) to three significant figures.
A negligible amount of this energy goes to the resulting 5726Fe atom as kinetic energy. About 90 percent of the time, after the electron-capture process, the 5726Fe nucleus emits two successive gamma-ray photons of energies 0.140MeV and 1.70 102MeV in decaying to its ground state. The electron-capture process itself emits a massless neutrino, which also carries off kinetic energy. What is the energy of the neutrino emitted in this case?
Express your answer in millions of electron volts.

Answers

Answer:

Explanation:

⁵⁷Co₂₇  + e⁻¹  =  ²⁷Fe₂₆

mass defect = 56.936296 + .00055 - 56.935399

= .001447 u

equivalent energy

= 931.5 x .001447 MeV

= 1.3479 MeV .

= 1.35 MeV

energy of gamma ray photons = .14  + .017

= .157 MeV .

Rest of the energy goes to neutrino .

energy going to neutrino .

= 1.35 - .157

= 1.193 MeV.

Scenario 2: Use the following information to answer questions 3 and 4:
Your client, Jim, is interested in weight control. He weighs 75kg.
3. If Jim walks 3.3 mph (0% grade), how long must he walk to expend 300 kcal total?
A. 52 min
B. 42 min
C. 65 min
D. 99 min
4. If Jim exercises at an intensity of 6 kcal/min, what is the leg ergometer work rate?
A. 47 watts
B. 90 watts
C. 61 watts
D. 71 watts

Answers

Answer:

A. 52 min

.A. 47 watts

Explanation:

Given that;

jim weighs 75 kg

and he walks 3.3 mph; the objective here is to determine how long must he walk to expend 300 kcal.

Using the following relation to determine the amount of calories burned per minute while walking; we have:

[tex]\dfrac{MET*weight (kg)*3.5}{200}[/tex]

here;

MET = energy cost of a physical activity for a period of time

Obtaining the data for walking with a speed of 3.3 mph From the  standard chart for MET, At 3.3 mph; we have our desired value to be 4.3

However;

the calories burned in a minute = [tex]\dfrac{4.3*75 (kg)*3.5}{200}[/tex]

= 5.644

Therefore, for walking for 52 mins; Jim  burns approximately 293.475 kcal which is nearest to 300 kcal.

4.

Given that:

mass m = 75 kg

intensity = 6 kcal/min

The eg ergometer work rate = ??

Applying the formula:

[tex]V_O_2 ( intensity ) = ( \dfrac{W}{m}*1.8)+7[/tex]

where ;

[tex]V_O_2 ( intensity ) = \dfrac{1 \ kcal min^{-1}*10^{-3}}{5}[/tex]

[tex]V_O_2 ( intensity ) = \dfrac{6*1 \ kcal min^{-1}*10^{-3}}{5}[/tex]

[tex]V_O_2 ( intensity ) = 0.0012[/tex]

∴[tex]0.0012 = (\dfrac{W}{75}*1.8)+7 \\ \\ W = \dfrac{0.0012-7}{1.8}*75 \\ \\ W = \dfrac{7*75}{1.8} \\ \\ W = 291.66 \ kg m /min[/tex]

Converting to watts;

Since;  6.118kg-m/min is =  1 watt

Then 291.66 kgm /min will be equal to 47.67 watts

≅ 47 watts

An arrow is shot from a height of 1.55 m toward a cliff of height H. It is shot with a velocity of 26 m/s at an angle of 60° above the horizontal. It lands on the top edge of the cliff 3.99 s later.
(a) Draw a sketch of the given example. Include the x-y coordinate system.
(b) What is the height of the cliff?
(c) What is the maximum height reached by the arrow along its trajectory?
(d) What is the arrow's impact speed just before hitting the cliff?

Answers

Answer:

Explanation:

vertical component of the velocity of arrow

= 26 sin 60 = 22.516 m

height reached by it after 3.99 s

h = ut - 1/2 g t²

= 22.516 x 3.99 - .5 x 9.8 x 3.99²

= 89.83 - 78

11.83 m

Total height of cliff = 1.55 + 11.83

= 13.38 m

c ) maximum height covered s

v² = u² - 2gs

0 = u² - 2gs

s = u² / 2g

= 22.516² / 2 x 9.8

= 25.86

maximum height reached

= 25.86 + 1.55

= 27.41 m

d )

vertical speed after 3.99 s

v = u - gt

= 22.516 - 9.8 x 3.99

= -16.586

Horizontal component will remain unchanged

Horizontal component = 26 cos 60

= 13 m /s

Resultant of two velocities

= √ 13²+ 16.568²

= 21 m /s

The frequency of the applied RF signal used to excite spins is directly proportional to the magnitude of the static magnetic field used to align the spins, with proportionality constant 5 hz/T. If the strength of the applied field is known to be 20 T plus or minus 3 T, which of the following correctly describes the uncertainty in the INVERSE frequency (1/frequency)?
A. 3/2000s
B. 3/5s
C. 1/15s
D. 1/4

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The uncertainty in inverse frequency is  [tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]

Explanation:

From the question we are told that

   The value of the proportionality constant is  [tex]k = 5 \frac{Hz }{T}[/tex]

   The strength of the magnetic field is  [tex]B = 20 \ T[/tex]

   The change in this strength of magnetic field is  [tex]\Delta B = 3 \ T[/tex]

The magnetic field is given as

           [tex]B = \frac{k}{\frac{1}{w} }[/tex]

Where [tex]w[/tex] is frequency

The uncertainty or error of the field is given as

         [tex]\Delta B = \frac{k }{[\frac{1}{w}^]^2 } \Delta [\frac{1}{w} ][/tex]

The uncertainty in inverse frequency is given  as

           [tex]\Delta [\frac{1}{w} ] = \frac{\Delta B}{k [\frac{1}{w^2} ]}[/tex]

                    [tex]\Delta [\frac{1}{w} ]= \frac{\Delta B}{k (B)^2 }[/tex]

substituting values

                  [tex]\Delta [\frac{1}{w} ]= \frac{3}{5 (20)^2 }[/tex]

               [tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]

A spring is hung from the ceiling. A 0.573-kg block is then attached to the free end of the spring. When released from rest, the block drops 0.198 m before momentarily coming to rest, after which it moves back upward. (a) What is the spring constant of the spring

Answers

Answer:

a) The spring constant of the spring is [tex]28.381\,\frac{N}{m}[/tex], b) The angular frequency of the block is [tex]7.038\,\frac{rad}{s}[/tex].

Explanation:

This question is incomplete and complete version will be presented herein:

A spring is hung from the ceiling. A 0.573-kg block is then attached to the free end of the spring. When released from rest, the block drops 0.198 m before momentarily coming to rest, after which it moves back upward. (a) What is the spring constant of the spring (b) Find the angular frequency of the block 's vibrations.

a) Since spring is hung from the ceiling and is stretched by action of gravity on 0.573 kilogram block. According to the Hooke's Law, force experimented by the spring is directly proportional to elongation. An expression describing the phenomenon is presented and described below: (System at equilibrium - Newton's Second Law)

[tex]m\cdot g = k\cdot \Delta x[/tex]

Where:

[tex]m[/tex] - Mass, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

[tex]k[/tex] - Spring constant, measured in newtons per meter.

[tex]\Delta x[/tex] - Spring linear deformation, measured in meters.

Now, the spring constant is cleared in this equation and outcome is computed: ([tex]m = 0.573\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\Delta x = 0.198\,m[/tex])

[tex]k = \frac{m\cdot g}{\Delta x}[/tex]

[tex]k = \frac{(0.573\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}{0.198\,m}[/tex]

[tex]k = 28.381\,\frac{N}{m}[/tex]

The spring constant of the spring is [tex]28.381\,\frac{N}{m}[/tex].

b) Let suppose that mass-spring system is experimenting a simple harmonic motion, so that angular frequency is equal to:

[tex]\omega = \sqrt{\frac{k}{m} }[/tex]

Given that [tex]k = 28.381\,\frac{N}{m}[/tex] and [tex]m = 0.573\,kg[/tex], the angular frequency, measured in radians per second, of the block is:

[tex]\omega = \sqrt{\frac{28.381\,\frac{N}{m} }{0.573\,kg} }[/tex]

[tex]\omega = 7.038\,\frac{rad}{s}[/tex]

The angular frequency of the block is [tex]7.038\,\frac{rad}{s}[/tex].

assume that the initial speed is 25 m/s and the angle of projection is 53 degree above the hroizontal. the cannon ball leaves the uzzel of the cannon at a highet of 200 m.( the cannon is at the edge of the cliff) A: find the horizontal distance the cannon travles. B: when does the cannon ball reach the ground? C: find the maximum highet the cannon ball reaches.

Answers

Answer:

A.  xmax = 131.49 m

B.  t = 8.74 s

C.  ymax = 220.33 m

Explanation:

A. In order to find the horizontal distance which cannon travels you first calculate the flight time. The flight time can be calculated by using the following formula:

[tex]y=y_o+v_osin\theta-\frac{1}{2}gt^2[/tex]      (1)

yo: height from the projectile is fired = 200m

vo: initial velocity of the projectile = 25m/s

g: gravitational acceleration = 9.8 m/s^2

θ: angle between the direction of the initial motion of the ball and the horizontal = 53°

t: time

You need the value of t when the projectile hits the ground. Then, in th equation (1) you make y = 0m.

When you replace the values of all parameters in the equation (1), you obtain the following quadratic formula:

[tex]0=200+(25)sin53\°t-\frac{1}{2}(9.8)t^2\\\\0=200+19.96t-4.9t^2[/tex] (2)

You use the quadratic formula to obtain the value of t:

[tex]t_{1,2}=\frac{-19.96\pm\sqrt{(19.96)^2-4(-4.9)(200)}}{2(-4.9)}\\\\t_{1,2}=\frac{-19.96\pm65.71}{-9.8}\\\\t_1=8.74s\\\\t_2=-4.66s[/tex]

You use the positive value because it has physical meaning.

Now, you can calculate the horizontal range of the projectile by using the following formula:

[tex]x_{max}=v_ocos\theta t[/tex]      

[tex]x_{max}=(25m/s)(cos53\°)(8.74s)=131.49m[/tex]

The cannon ball travels a horizontal distance of 131.49 m

B. The cannon ball reaches the canon for t = 8.74s

C. The maximum height is obtained by using the following formula:

[tex]y_{max}=y_o+\frac{v_o^2sin^2\theta}{2g}[/tex]     (3)

By replacing in the equation (3) the values of all parameters you obtain:

[tex]y_{max}=200m+\frac{(25m/s)^2(sin53\°)^2}{2(9.8m/s^2)}\\\\y_{mac}=200m+20.33m=220.33m[/tex]

The maximum height reached by the cannon ball is 220.33m

If you secure a refrigerator magnet about 2mmfrom the metallic surface of a refrigerator door and then move the magnet sideways, you can feel a resistive force, indicating the presence of eddy currents in the surface.

A)Estimate the magnetic field strength Bof the magnet to be 5 mTand assume the magnet is rectangular with dimensions 4 cmwide by 2 cmhigh, so its area A is 8 cm2. Now estimate the magnetic flux ΦB into the refrigerator door behind the magnet.
Express your answer with the appropriate units.

B)If you move the magnet sideways at a speed of 2 cm/s, what is a corresponding estimate of the time rate at which the magnetic flux through an area A fixed on the refrigerator is changing as the magnet passes over? Use this estimate to estimate the emf induced under the rectangle on the door's surface.
Express your answer with the appropriate units.

Answers

Answer:

(A) 4* 6 ^ ⁻6 T m² (B) 2 * 10 ^ ⁻6 v

Explanation:

Solution

Given that:

A refrigerator magnet about = 2 mm

The estimated magnetic field strength of the magnet is = 5 m T

The Area = 8 cm²

Now,

(A) The magnetic flux ΦB = BA

Thus,

ΦB  = (5 * 10^⁻ 3) ( 4 * 10 ^⁻2) * ( 2 * 10^ ⁻2) Tm²

So,

ΦB =  4* 6 ^ ⁻6 T m²

(B)By applying Faraday's Law we have the following formula given below:

Ε = Bℓυ

Here,

ℓ = 2 cm the same as 2 * 10 ^⁻2 m

B = 5 m T = 5 * 10 ^ ⁻3 T

υ = 2 cm/s  = 2 * 10 ^ ⁻2 m/s

Thus,

Ε = (5 * 10 ^ ⁻3 T) *  (2 * 10 ^ ⁻2) (2 * 10 ^ ⁻2) v

E =2 * 10 ^ ⁻6 v

A) The magnetic flux ΦB into the refrigerator door behind the magnet :

4 * 6⁻⁶ Tm²

B) The estimated emf induced under the rectangle on the door's surface ;

2 * 10⁻⁶ v

Given data :

magnetic field strength of magnet ( B )  = 5 mT

size of refrigerator magnet = 2 mm

Area of magnet ( A )  = 4 * 2 = 8 cm²

A) Determine the magnetic flux ΦB

where ; ΦB  = BA

ΦB = ( 5 * 10⁻³ ) * ( 4 * 10⁻² ) * ( 2 * 10⁻² ) Tm²

      =  4 * 6⁻⁶ Tm²

B) Determine estimated emf induced

To determine the estimated emf we will apply Faraday's law

Ε = Bℓυ ---- ( 2 )

where : B = 5 * 10⁻³ T,  ℓ = 2 * 10⁻² m,  υ = 2 * 10⁻² m/s

insert values into equation 2

E = ( 5 * 10⁻³ ) * ( 2 * 10⁻² ) * ( 2 * 10⁻² )

  = 2 * 10⁻⁶ v

Hence we can conclude that The magnetic flux ΦB is 4 * 6⁻⁶ Tm² and The estimated emf induced is  2 * 10⁻⁶ v

Learn more about magnet flux : https://brainly.com/question/4721624

A swimmer heading directly through a 200m wide river reaches the opposite shore in 6 min 40s. She is washed downstream 480 m. How fast can you swim in calm water?

Answers

Answer :v=480m400s=1.2ms

2002+4802=H2  

The hypotenuse  H=520m  

A quicker way to get the length of the hypotenuse is to recognize that this is a simple 5–12–13 triangle where the sides are multiples of 5, 12, and 13:

5(40) = 200m, 12(40)= 480m, 13(40)= 520m

We know that the swimmer travelled 520 m in 400 seconds, so her average speed was:

VR=520m400sec=   1.3ms

hope i got it right!! xx

Explanation:

How can I show that the sphere of radius R performs a simple harmonic movement. how can i set its reference point and make the free body diagram.

I have the torque sum equation which is equal to the moment of inertia by angular acceleration

Answers

Explanation:

Draw a free body diagram of the pendulum (the combination of the sphere and the massless rod).  There are three forces on the pendulum:

Weight force mg at the center of the sphere,

Reaction force in the x direction at the pivot,

Reaction force in the y direction at the pivot.

Sum the torques about the pivot O.

∑τ = I d²θ/dt²

mg (L sin θ) = I d²θ/dt²

For small θ, sin θ ≈ θ.

mg L θ = I d²θ/dt²

Since d²θ/dt² is directly proportional to θ, this fits the definition of simple harmonic motion.

If you wish, you can use parallel axis theorem to find the moment of inertia about O:

I = Icm + md²

I = ⅖ mr² + mL²

mg L θ = (⅖ mr² + mL²) d²θ/dt²

gL θ = (⅖ r² + L²) d²θ/dt²

Crystalline germanium (Z=32, rho=5.323 g/cm3) has a band gap of 0.66 eV. Assume the Fermi energy is half way between the valence and conduction bands. Estimate the ratio of electrons in the conduction band to those in the valence band at T = 300 K. (See eq. 10-11) Assume the width of the valence band is ΔΕV ~ 10 eV.

Answers

Answer:

= 8.2*10⁻¹²

Explanation:

Probability of finding an electron to occupy a state of energy, can be expressed by using Boltzmann distribution function

[tex]f(E) = exp(-\frac{E-E_f}{K_BT} )[/tex]

From the given data, fermi energy lies half way between valence and conduction bands, that is half of band gap energy

[tex]E_f = \frac{E_g}{2}[/tex]

Therefore,

[tex]f(E) = exp(-\frac{E-\frac{E_g}{2} }{K_BT} )[/tex]

Using boltzman distribution function to calculate the ratio of number of electrons in the conduction bands of those electrons in the valence bond is

[tex]\frac{n_{con}}{n_{val}} =\frac{exp(-\frac{[E_c-E_g/2]}{K_BT} )}{exp(-\frac{[E_v-E_fg/2}{K_BT} )}[/tex]

[tex]= exp(\frac{-(E_c-E_v}{K_BT} )\\\\=exp(\frac{-(0.66eV)}{(8.617\times10^-^5eV/K)(300K)} )\\\\=8.166\times10^-^1^2\approx8.2\times10^{-12}[/tex]

Other Questions
The soup produced by a company has a salt level that is normally distributed with a mean of 5.4 grams and a standard deviation of 0.3 grams. The company takes readings of every 10th bar off the production line. The reading points are 5.8, 5.9, 4.9, 5.2, 5.0, 4.9, 6.2, 5.1, 5.7, 6.1. Is the process in control or out of control and why? For a t distribution with 16 degrees of freedom, find the area, or probability, in each region.a. To the right of 2.583 Cause Greek city states are near the Mediterranean Sea whats the effect An angle measures 32 less than the measure of its supplementary angle. What is themeasure of each angle? GUYS PLS I NEED HELP Presented below are two independent situations: A) Sandhill Inc. acquired 10% of the 420,000 shares of common stock of Schuberger Corporation at a total cost of $15 per share on June 17, 2020. On September 3, Schuberger declared and paid a $120,000 dividend. On December 31, Schuberger reported net income of $520,000 for the year. B) Blue Corporation obtained significant influence over Hunsaker Company by buying 30% of Hunsakers 120,000 outstanding shares of common stock at a cost of $18 per share on January 1, 2020. On May 15, Hunsaker declared and paid a cash dividend of $120,000. On December 31, Hunsaker reported net income of $220,000 for the year. Prepare all necessary journal entries for 2017 for (a) Edelman and (b) Wen. A doctor prescribes her patient a 20-mg dose of medicine, and the medicine has a concentration of 80 mg/ml. How much medication will the patient receive?m Suppose you have a linear integer optimization problem. You solve the problem as a linear optimization problem by ignoring the integer constraints and obtain an integer optimal solution (i.e., your model did not require the variables to be integer, but it turned out when you solved the problem Solver found an optimal answer where the variables are integer).Which of the statements below are correct (choose only one):A. You can categorically state that you have the optimal solution to the integer optimization problem.B. You can categorically state that you do not have the optimal solution to the integer optimization problem.C. None of the above. The ratio of ages of kissi and esinam is 3:5 and esinam is 3:5 The sum of ages of all 3 is 147 years.whats the age difference between oldest and youngest ? when did akbar defeat in the second battle of panipat? 2y + 18x = 2x(x + 9)3(y - 4) = 9x - 12-6Help! Please show work and match the algebraic functions to the correct graph. You are in a laboratory attempting to identify a genetic defect responsible for a disease. You believe you have located the gene that results in a faulty proteinbut you aren't sure! How could you be sure you have located a section of DNA that encodes for a protein? What is the area of the obtuse triangle below?A. 90 sq unitsB. 23 sq unitsC. 18 sq unitsD. 45 sq units Mountain High Ice Cream Company transferred $63,000 of accounts receivable to the Prudential Bank. The transfer was made with recourse. Prudential remits 90% of the factored amount to Mountain High and retains 10% to cover sales returns and allowances. When the bank collects the receivables, it will remit to Mountain High the retained amount (which Mountain estimates has a fair value of $5,300). Mountain High anticipates a $3,300 recourse obligation. The bank charges a 3% fee (3% of $63,000), and requires that amount to be paid at the start of the factoring arrangement. Required: Prepare the journal entry to record the transfer on the books of Mountain High assuming that the sale criteria are met. (If no entry is required for a transaction/event, select "No journal entry required" in the first account field.) I need help cause I dont understand the concept Nichole bought a gift for her friend. Sheplaced the gift in a box with the lengthof 10 inches, width of 5 inches, andheight of 2 inches. What is the surfacearea of the box? At a middle school, 30% of the students walk to school, 1/5 (20%) ride their bikes, 12.5 are dropped off by car, and the remaining students ride the bus to school. Is there are 800 students who attend this school, how many students use each form of transportation? Which community has the greater species diversity?Select one:Community Y, because the total number of individuals is greaterCommunity Y, because the community is richerCommunity X, because the distribution of species is more evenCommunity X, because the community is richer Here are comparative statement data for Ivanhoe Company and Pharoah Company, two competitors. All balance sheet data are as of December 31, 2017, and December 31, 2016.2017 2016 2017 2016 (Ivanhoe (Ivanhoe (Pharoah (Pharoah Company) Company) Company) Company)Net sales $1,865,000 $595,000 Cost of goods sold 1,064,000 279,000 Operating expenses 252,000 84,000 Interest expense 8,000 1,800 Income tax expense 70,900 35,000 Current assets 583,495 $559,214 149,171 $142,246Plant assets (net) 942,972 895,000 250,113 225,203Current liabilities 118,722 135,709 63,273 54,203Long-term liabilities 204,042 161,100 53,020 44,750Common stock, $10 par 895,000 895,000 214,800 214,800Retained earnings 308,703 262,405 68,192 53,696Required:Prepare a vertical analysis of the 2017 income statement data for Ivanhoe Company and Pharoah Company. Gus has a checking account balance of $75. His bank will fund the a debit card purchase that creates a negative balance up to a limit of $200, but charges a $35 fee per transaction for any purchase made in overdraft. Gus made a purchase of $100 yesterday, and another purchase of $27 today. He used a debit card for each purchase. Then, he deposited a check for $25. What is Gus' current account balance?