Answer:
6C2H2(g) + 16H2O(g) + 3CO2(g) ------> 6Ca(OH)2(s) + 5CH2CHCO2H(g)
Explanation:
The reaction has the first step as the reaction of calcium carbide with water to yield acetylene and calcium hydroxide as follows;
6CaC2(s) + 12H2O(g) -----> 6C2H2(g) + 6Ca(OH)2(s)
In the second step, acetylene, carbon dioxide and water react to form acrylic acid as follows;
6C2H2(g) + 4H2O(g) + 3CO2(g) ------> 5CH2CHCO2H(g)
The overall reaction equation is as follows;
6C2H2(g) + 16H2O(g) + 3CO2(g) ------> 6Ca(OH)2(s) + 5CH2CHCO2H(g)
2.85 x 10-3 moles of an unknown compound has a mass of 0.206 g. The compound could be:
Answer:
Calcium sulfide (CaS)
Explanation:
From the question
Number of mole (n) = reacting mass (R)/molar mass (m)
n = R/m.................... Equation 1
make m the subject of the equation
m = R/n...................... Equation 2
Given: R = 0.206, n = 0.00285 moles.
Substitute these values into equation 2
m = 0.206/(0.00285)
m = 72.3 g/mol
From the above, the compond with molar mass close to 72.3 g/mol is Calcium sulfide (CaS)
Where are electrons found in an atom?
Answer:
outside the nucleus
Explanation:
From an element's location in the periodic table, you can predict
A. its properties.
B. its chemical name.
C. its chemical symbol.
D. when it was discovered.
Answer:
A. It's properties
Explanation:
why phenol is more acid than alcohol????
Answer:
Phenol is more acidic than alcohol due to resonance stabilization of the phenoxide ion.
A student dissolves 15.0 g of ammonium chloride(NH4Cl) in 250. 0 g of water in a well-insulated open cup. She then observes the temperature of the water fall from 20.0 oC to 16.0 oC over the course of minutes. Use this data, and any information you need from the ALEKS Data resource, to answer the questions below about this reaction:
NH4Cl(s) rightarrow NH4+(aq) + Cl-(aq)
You can make any reasonable assumptions about the physical properties of the solution. Note for advanced students: it's possible the student did not do the experiment carefully, and the values you calculate may not be the same as the known and published values for this reaction.
1. Is this reaction exothermic, endothermic, or neither?
2. If you said the reaction was exothermic or endothermic, calculate the amount of heat that was released or absorbed by the reaction in this case.
3. Calculate the reaction enthalpy deltaHrxn per mole of NH4CI.
Answer:
1) Endothermic.
2) [tex]Q_{rxn}=4435.04J[/tex]
3) [tex]\Delta _rH=15.8kJ/mol[/tex]
Explanation:
Hello there!
1) In this case, for these calorimetry problems, we can realize that since the temperature decreases the reaction is endothermic because it is absorbing heat from the solution, that is why the temperature goes from 22.00 °C to 16.0°C.
2) Now, for the total heat released by the reaction, we first need to assume that all of it is released by the solution since it is possible to assume that the calorimeter is perfectly isolated. In such a way, it is also valid to assume that the specific heat of the solution is 4.184 J/(g°C) as it is mostly water, therefore, the heat released by the reaction is:
[tex]Q_{rxn}=-(15.0g+250.0g)*4.184\frac{J}{g\°C}(16.0-20.0)\°C\\\\ Q_{rxn}=4435.04J[/tex]
3) Finally, since the enthalpy of reaction is calculated by dividing the heat released by the reaction over the moles of the solute, in this case NH4Cl, we proceed as follows:
[tex]\Delta _rH=\frac{ Q_{rxn}}{n}\\\\\Delta _rH= \frac{ 4435.04J}{15.0g*\frac{1mol}{53.49g} } *\frac{1kJ}{1000J} \\\\\Delta _rH=15.8kJ/mol[/tex]
Best regards!
Best regards!
Consider the following intermediate chemical equations.
P₄(s)+3O₂(g) ---> P₄O₆(s) ΔH₁ = -1640kJ
P₄O₁₀(s) ---> P₄(s)+5O₂(g) ΔH₂ = 2,940.1 kJ
What is the enthalpy of the overall chemical reaction P₄O₆(s)+2O₂(g) ---> P₄O₁₀(s)
A.) -4,580 kJ
B.) -1,300 kJ
C.) 1,300 kJ
D.) 4,580 kJ
Answer:
-1,300 kJ
I don't want to explain it brainly AAAAA
The standard enthalpy of the reaction is the enthalpy change which occurs in a system when a matter is transformed by a chemical reaction under standard conditions. Here the enthalpy of the overall chemical reaction is -1,300 kJ. The correct option is B.
What is enthalpy change?In any general chemical reaction, the reactants undergo chemical changes to form products. The change in enthalpy is represented as ΔrH and is termed as the reaction enthalpy. It can be calculated by subtracting the sum of enthalpies of all the reactants from that of the products.
ΔrH = ∑ aiH products - ∑ bi H reactants
Here we should reverse the first reaction and also multiply its ΔH by (- 1):
P₄O₆(s) → P₄(s) + 3O₂(g), ΔH₁' = 1640.1 kJ.
The second reaction is also reversed and also multiply its ΔH by (- 1):
P₄(s) + 5O₂(g) → P₄O₁₀(s), ΔH₂' = - 2940.1 kJ.
If we add the two reactions after modification, we get:
P₄O₆(s) → P₄O₁₀(s).
Therefore, ΔH = ΔH₁' + ΔH₂' = 1640.1 kJ + (- 2940.1 kJ) = - 1300 kJ.
Thus the correct option is B.
To know more about enthalpy of a reaction, visit;
https://brainly.com/question/1657608
#SPJ7
Which of the following is an exothermic reaction?
a solid to a liquid
a gas change to a liquid
a liquid to a gas
a solid to a gas
Answer:
liquid to gas
Explanation:
when boiling water when evaporating heat is given out
These properties best describe which body (Gases Surface, 75%H, 25% He, Zones)
(18 Points)
Planet
or
Sun
NO LINKS
Answer:sun
Explanation:The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, heated to incandescence by ... When hydrogen fusion in its core has diminished to the point at which the Sun is no longer in . Sunlight on the surface of Earth is attenuated by Earth's atmosphere, so that less power arrives
Choose the options below that are true.
A. The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism.
B. The rate laws of all chemical reactions can be determined directly from their net chemical equations.
C. The rate laws of bimolecular elementary reactions are second order overall.
D. The rate law for a given reaction can be determined from its reaction mechanism, without the accompanying rates of each elementary step in the mechanism.
Answer:
The options (A) -The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and (C) -The rate laws of bimolecular elementary reactions are second order overall ,is true.
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
Therefore , the first and third statement is true.
Calculate the molality of a solution containing 15.0 g of ethylene glycol (C2H6O2) dissolved in 145 g of water.
Answer:
Molarity=moles of solute/ L of solution
Molality = moles of solute/ kg of solvent
Solute= what is being dissolved
Solvent= what is doing the dissolving
Solution= both together
Explanation:
Example's:
#1. For number one you use the Molarity formula. M= moles of solute/ L of solution.
To find moles of Mg(NO3)2 you divide 95g by its molar mass which is 148.33g so 95/148.33=.6405 moles of Mg(NO3)2. Then plug in what you have. .38M= .6405 moles Mg(NO3)2 / X. Then solve for X using algebra. .6405/.38= 1.686 L of solution. (Volume).
Final Answer: 1.686 L
#2. For number 2 you use the Molality formula. m= moles of solute/ kg of solvent.
First you have to find moles of glucose by taking 267g and dividing it by its molar mass which is 180.56g. 267g/180.56g= 1.532 moles of glucose. Then you have to change L to kg. The easiest way to do this is to look at the density and see that for every 1 ml there is 1 gram. So to take Liters to ml you multiply 1.59 by 1000 and get 1590 ml. So that means you have 1590 grams. then you divide 1590grams by 1000 to get 1.59 Kg of slovent. Then plug in your information into the formula. molality= 1.532 moles of glucose / 1.59 Kg of solvent= .964 molality.
Final answer: .964 mol/Kg
#3. m= moles of solute / Kg of solvent. 0.445 mol solute / 2.07 Kg solvent= .215 Molality
Final Answer: .215 mol/Kg
#4. m= moles of solute / Kg of solvent. take 13.5g and divide it by ethylene glycols molar mass which is 62.068 g. 13.5g / 62.068g= .218 mol. Then you take 135g of water and divide it by 1000 to get Kg. 135/1000=.135 Kg. Then plug in your information. m= .218mol/.135 Kg= 1.615 molality
Final Answer: 1.615 mol/Kg.
what do you mean by carrier
Answer:
1 : one that carries : bearer, messenger. 2a : an individual or organization engaged in transporting passengers or goods for hire. b : a transportation line carrying mail between post offices.
Calculate the number of molecules found in 35 g of Sodium Hydroxide?
Answer:
5.27*10^23 (rounded to 3 significant figures)
Explanation:
The amount of molecules in one mole of anything is equal to Avogadro's number: 6.022×10^23
To find the number of moles of NaOH in 35 grams of it, do 35 divided by the molar mass (39.997): 35/39.997=0.87506562 moles of NaOH
To find the number of molecules, multiply the moles of NaOH by Avogadro's number: 0.87506562×(6.022×10^23)=5.26964522*10^23
Answer:
5.27x10²³ molecules
Explanation:
In order to solve this problem we first convert 35 g of Sodium Hydroxide (NaOH) into moles, using its molar mass:
35 g ÷ 40 g/mol = 0.875 molFinally we convert 0.875 moles into number of molecules, using Avogadro's number:
0.875 mol * 6.023x10²³ molecules/mol = 5.27x10²³ moleculesHeat is most closely related to which kind of energy?
Answer:
I'm very sure it's thermal energy.
Explanation:
Answer:
thermal energy is the answer
Compared to water, metals heat up faster because they have
Answer: the answer would be a lower specific heat.
Explanation:
Calculate the moles of Iron (III) Sulfide (Fe253) in 218.8 grams. The molar mass of Iron (III) Sulfide is 207.90 g/mol. Do not include units in your response.
Answer:
1.052
Explanation:
In order to convert from grams of a substance to moles, we need to divide the given mass by the molar mass of the substance:
Moles = Mass / Molar MassAll the required data is given by the problem:
Moles = 218.8 g / 207.90 g/mol = 1.052 molesThere are 1.052 moles in 218.8 grams of iron (III) sulfide.
A city continuously disposes of effluent from a wastewater treatment plant into a river. The minimum flow in the river is 130 m3/s, and the discharge from the treatment plant is 37 m3/s. Upstream from the outfall, the background concentration is 0.69 mg/L. The maximum allowable concentration in the river is 1.1 mg/L. What is the maximum concentration that of the pollutant (in mg/L) that can be safely discharged from the wastewater treatment plant
Answer:
[tex]2.54\ \text{mg/L}[/tex]
Explanation:
C = Allowable concentration = 1.1 mg/L
[tex]Q_1[/tex] = Flow rate of river = [tex]130\ \text{m}^/\text{s}[/tex]
[tex]Q_2[/tex] = Discharge from plant = [tex]37\ \text{m}^3/\text{s}[/tex]
[tex]C_1[/tex] = Background concentration = 0.69 mg/L
[tex]C_2[/tex] = Maximum concentration that of the pollutant
The concentration of the mixture will be
[tex]C=\dfrac{Q_1C_1+Q_2C_2}{Q_1+Q_2}\\\Rightarrow C_2=\dfrac{C(Q_1+Q_2)-Q_1C_1}{Q_2}\\\Rightarrow C_2=\dfrac{1.1(130+37)-130\times 0.69}{37}\\\Rightarrow C_2=2.54\ \text{mg/L}[/tex]
The maximum concentration that of the pollutant (in mg/L) that can be safely discharged from the wastewater treatment plant is [tex]2.54\ \text{mg/L}[/tex].
What type of intermolecular forces occur between 2 oil molecules?
Answer:
The three main kinds of intermolecular interactions are dipole-dipole interactions, London dispersion forces, and hydrogen bonds
Explanation:
What is a biome?
Question 1 options:
An area with lots of of rainfall.
An area with the same climate, landscape, plants, and animals.
An area with different temperatures.
A bunch of trees, forests, and rivers.
Answer:
An area with the same climate, landscape, plants, and animals.
A gas occupies a volume of 2.4 L at 0.14 ATM. What volume will the gas occupy at 0.84 ATM?
Answer:
0.4 L
Explanation:
Calculate by using Boyle's Law P₁V₁=P₂V₂
(0.14atm)(2.4L) = (0.84atm)(V₂)
0.336 atmL = (0.84atm)(V₂)
V₂ = 0.336 atmL/0.84atm
V₂ = 0.4 L
Explain what you think controls a material’s porosity
The primary porosity of a sediment or rock consists of the spaces between the grains that make up that material. The more tightly packed the grains are, the lower the porosity.
Pleaseee helpppp!!!!!!!!
Answer:
a covalent would be the two that are nonmetals
. Give an example of a salt that is less soluble when the temperature increases
Answer:
cerium (iii) sulfate is less soluble
Answer:
cerium sulphate is less solube when the temperature increase
The domain Archaea are unicellular prokaryotes and can be autotrophs or heterotrophs
true or false?
Answer:
I think its true I dont really know
Explanation:
true
Please help ASAP
Identify the atom with the ground-state electron configuration shown for its valence shell.
3s^2 3p^1
How many milliliters of a 25% (m/v) NaOH solution would contain 75 g of NaOH?
A 19 mL
B) 25 mL
C
33 mL
D
75 mL
E
3.0 x 102 mL
Answer:
E 3.0 x 10² mL.
Explanation:
Hello there!
In this case, according to the formula for the calculation of the mass-volume percent:
[tex]\% m/V=\frac{m_{solute}}{V_{solution}}*100\%[/tex]
Whereas it is necessary to know the mass of the solute and the volume of the solution. Thus, given the mass of NaOH as the solute, the volume of the solution would be:
[tex]V_{solution}=\frac{m_{solute}}{\% m/V}*100\%[/tex]
Then, by plugging in we obtain:
[tex]V_{solution}=\frac{75g}{25\%}*100\%\\\\V_{solution}=3.0x10^2mL[/tex]
Thus, the answer is E 3.0 x 10² mL.
Best regards!
Which of these actions precedes a precipitation event
A: clouds form
B: the air gets colder
C: the wind picks up speed
D: Raindrops are supercooled
Answer:
C. The wind picks up speed
Explanation:
Im not sure but i hope im correct
Btw goodluck:)
Calculate the pH of a 0.75 M solution of H2SO4.
Answer:
न्द्न्द्ज्द्ज्फ्ज्फ्ज
The reason for using 1-propanol as the solvent of choice for recrystallization is that triphenylphosphine oxide is more soluble in 1-propanol than the alkene product because triphenylphosphine oxide can use its oxygen to hydrogen-bond to 1-propanol, whereas the alkene has no hydrogen-bonding capability. Triphenylphosphine oxide, therefore, is removed based on its polarity and H-bonding ability.
a. True
b. False
Answer:
True
Explanation:
Hydrogen bonding is a bond that exists between hydrogen and a highly electronegative element such as oxygen, nitrogen, fluorine etc.
The greater solubility of the triphenylphosphine oxide owes to the hydrogen bonded interaction between it and the 1-propanol.
The alkene lacks such hydrogen bonded interaction because it does not have a highly electronegative atom in its structure.
Hence, triphenylphosphine oxide is removed based on its polarity and hydrogen bonding ability.
Which of the following combinations of quantum numbers is permissible?Question 23 options: n = 1, l = 2, ml = 0, ms = n = 4, l = 3, ml = 1, ms = n = 3, l = 3, ml = 1, ms = n = 2, l = 1, ml = –1, ms = 0 n = 4, l = 3, ml = 4, ms =
Answer: n= 4, , l= 3, [tex]m_l[/tex] = 1, permissible
Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1).For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as [tex]m_l[/tex]. The value of this quantum number ranges from [tex](-l\text{ to }+l).[/tex]
Spin Quantum number : It describes the direction of electron spin. This is represented as [tex]m_s[/tex]. The value of this is [tex]+\frac{1}{2}[/tex] for upward spin and [tex]-\frac{1}{2}[/tex] for downward spin.
a) n=1 , l= 2, [tex]m_l[/tex] = 0, not permissible as l can not greater than n.
b) n= 4, , l= 3, [tex]m_l[/tex] = 1, permissible
c) n= 3, l= 3, [tex]m_l[/tex] = 1, not permissible as l can not equal than n.
d) n= 4 , l= 3, [tex]m_l[/tex] = 4, not permissible as [tex]m_l[/tex] can not greater than l.
The change in time for the first quarter is
seconds.
The change in time for the second quarte 1.39
seconds.
2.07
The change in time for the third quarter is
2.18
seconds.
The change in time for the fourth quarter is
second
Answer: The change in time for the first quarter is 1.39 seconds.
The change in time for the second quarter is 0.78 seconds.
The change in time for the third quarter is 0.64 seconds.
The change in time for the fourth quarter is 0.54 seconds.
Explanation: took info from my data and completed lab
Step 5: Measure the Speed of the Toy Car on the Higher Track
Calculate the change in time for each quarter of the track. Record the change in time in Table E of your Student Guide.
Also added the other calculations -
Calculate the average time the car took to reach each checkpoint. Record the average time in Table D of your Student Guide.
The average time to the first quarter checkpoint is 1.39 seconds.
The average time to the second quarter checkpoint is 2.18 seconds.
The average time to the third quarter checkpoint is 2.82 seconds.
The average time to the finish line is 3.36 seconds.
Calculate the speed of the car at each checkpoint by dividing the distance between each checkpoint, in meters, by the change in time. Record your answers in Table E of your Student Guide.
The speed at the first quarter checkpoint is 1.09 m/s.
The speed at the second quarter checkpoint is 1.95 m/s.
The speed at the third quarter checkpoint is 2.37 m/s.
The speed at the finish line is 2.80 m/s.
Please make me Brainly..:)