Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal . Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer cannot be understood or graded.

Answers

Answer 1

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is    [tex]M =1.43 *10^{32} \ kg[/tex]

Explanation:

From the  question we are told that

       The mass of the stars are [tex]m_1 = m_2 =M[/tex]

        The orbital speed of each star is  [tex]v_s = 240 \ km/s =240000 \ m/s[/tex]

         The orbital period is [tex]T = 12.5 \ days = 12.5 * 2 4 * 60 *60 = 1080000\ s[/tex]

The centripetal force acting on these stars is mathematically represented as

      [tex]F_c = \frac{Mv^2}{r}[/tex]

The gravitational force acting on these stars is mathematically represented as

      [tex]F_g = \frac{GM^2 }{d^2}[/tex]

So  [tex]F_c = F_g[/tex]

=>        [tex]\frac{mv^2}{r} = \frac{Gm_1 * m_2 }{d^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{(2r)^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{4r^2}[/tex]

=>    [tex]M = \frac{v^2*4r}{G}[/tex]

The distance traveled by each sun in one cycle is mathematically represented as

     [tex]D = v * T[/tex]

      [tex]D = 240000 * 1080000[/tex]

      [tex]D = 2.592*10^{11} \ m[/tex]

Now this can also be represented as

      [tex]D = 2 \pi r[/tex]

Therefore

                  [tex]2 \pi r= 2.592*10^{11} \ m[/tex]

=>   [tex]r= \frac{2.592*10^{11}}{2 \pi }[/tex]

=>    [tex]r= 4.124 *10^{10} \ m[/tex]

So  

       [tex]M = \frac{v^2*4r}{G}[/tex]

=>    [tex]M = \frac{(240000)^2*4*(4.124*10^{10})}{6.67*10^{-11}}[/tex]

=>    [tex]M =1.43 *10^{32} \ kg[/tex]

       

     

Plaskett's Binary System Consists Of Two Stars That Revolve In A Circular Orbit About A Center Of Mass

Related Questions

Water flows at 0.850 m/s from a hot water heater, through a 450-kPa pressure regulator. The pressure in the pipe supplying an upstairs bathtub 3.70m above the heater is 414-kPa. What's the flow speed in this pipe?

Answers

Answer:

The velocity is  [tex]v_2= 0.45 \ m/s[/tex]

Explanation:

From the question we are told that

      The initial speed of the hot water is  [tex]v_1 = 0.85 \ m/s[/tex]

     The pressure from the heater  [tex]P_1 = 450 \ KPa = 450 *10^{3} \ Pa[/tex]

      The height of the hot water before flowing is  [tex]h_1 = 0 \ m[/tex]

      The height of bathtub above the heater is [tex]h_2 = 3.70 \ m[/tex]

       The pressure in the pipe is [tex]P_2 = 414 KPa = 414 *10^{3} \ Pa[/tex]

       The density of water is [tex]\rho = 1000 \ kg/m^3[/tex]

Apply Bernoulli equation

      [tex]P_1 + \rho gh_1 +\frac{1}{2} \rho v_1^2 = \rho g h_2 + \frac{1}{2}\rho v_2 ^2[/tex]

Substituting values

     [tex](450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) = (1000 * *9.8*3.70) + (0.5*1000*v_2^2 )[/tex]

=>   [tex]v_2^2 = \frac{ (450 *10^{3}) + (1000 * 9.8 *0 ) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}[/tex]

=>   [tex]v_2= \sqrt{ \frac{ (450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}}[/tex]

=>    [tex]v_2= 0.45 \ m/s[/tex]

This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating strings. Assume that the rod is initially electrically neutral. For convenience we will refer to the left end of the rod as end A, and the right end of the rod as end B. In the answer options for this problem, "strongly attracted/repelled" means "attracted/repelled with a force of magnitude similar to that which would exist between two charged balls.A small metal ball is given a negative charge, then brought near (i.e., within about 1/10 the length of the rod) to end A of the rod. What happens to end A of the rod when the ball approaches it closely this first time?

Answers

Answer:

rod end A is strongly attracted towards the balls

rod end B is weakly repelled by the ball as it is at a greater distance

Explanation:

When the ball with a negative charge approaches the A end of the neutral bar, the charge of the same sign will repel and as they move they move to the left end, leaving the rod with a positive charge at the A end and a negative charge of equal value at end B.

Therefore rod end A is strongly attracted towards the balls and

rod end B is weakly repelled by the ball as it is at a greater distance

In an RC-circuit, a resistance of R=1.0 "Giga Ohms" is connected to an air-filled circular-parallel-plate capacitor of diameter 12.0 mm with a separation distance of 1.0 mm. What is the time constant of the system?

Answers

Answer:

[tex]\tau = 1\ ms[/tex]

Explanation:

First we need to find the capacitance of the capacitor.

The capacitance is given by:

[tex]C = \epsilon_0 * area / distance[/tex]

Where [tex]\epsilon_0[/tex] is the air permittivity, which is approximately 8.85 * 10^(-12)

The radius is 12/2 = 6 mm = 0.006 m, so the area of the capacitor is:

[tex]Area = \pi * radius^{2}\\Area = \pi * 0.006^2\\Area = 113.1 * 10^{-6}\ m^2[/tex]

So the capacitance is:

[tex]C = \frac{8.85 * 10^{-12} * 113.1 * 10^{-6}}{0.001}[/tex]

[tex]C = 10^{-12}\ F = 1\ pF[/tex]

The time constant of a rc-circuit is given by:

[tex]\tau = RC[/tex]

So we have that:

[tex]\tau = 10^{9} * 10^{-12} = 10^{-3}\ s = 1\ ms[/tex]

A skateboarder, starting from rest, rolls down a 12.8-m ramp. When she arrives at the bottom of the ramp her speed is 8.89 m/s. (a) Determine the magnitude of her acceleration, assumed to be constant. (b) If the ramp is inclined at 32.6 ° with respect to the ground, what is the component of her acceleration that is parallel to the ground?

Answers

Answer:

a) a = 3.09 m/s²

b) aₓ = 2.60 m/s²

Explanation:

a) The magnitude of her acceleration can be calculated using the following equation:

[tex] V_{f}^{2} = V_{0}^{2} + 2ad [/tex]

Where:

[tex]V_{f}[/tex]: is the final speed = 8.89 m/s

[tex]V_{0}[/tex]: is the initial speed = 0 (since she starts from rest)

a: is the acceleration

d: is the distance = 12.8 m    

[tex] a = \frac{V_{f}^{2}}{2d} = \frac{(8.89 m/s)^{2}}{2*12.8 m} = 3.09 m/s^{2} [/tex]

Therefore, the magnitude of her acceleration is 3.09 m/s².              

b) The component of her acceleration that is parallel to the ground is given by:

[tex] a_{x} = a*cos(\theta) [/tex]

Where:

θ: is the angle respect to the ground = 32.6 °

[tex] a_{x} = 3.09 m/s^{2}*cos(32.6) = 2.60 m/s^{2} [/tex]

Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².

I hope it helps you!

A skateboarder, starting from rest, rolls down a 12.8-m ramp the magnitude of the skateboarder's acceleration is approximately 3.07 [tex]m/s^2[/tex], the component of her acceleration that is parallel to the ground is approximately 1.66 [tex]m/s^2[/tex].

(a) The following kinematic equation can be used to calculate the skateboarder's acceleration:

[tex]v^2 = u^2 + 2as[/tex]

[tex](8.89)^2 = (0)^2 + 2a(12.8)[/tex]

78.72 = 25.6a

a = 78.72 / 25.6

a = 3.07 [tex]m/s^2[/tex]

(b) Trigonometry can be used to calculate the part of her acceleration that is parallel to the ground. We are aware that the ramp's angle with the ground is 32.6°.

[tex]a_{parallel }= a * sin(\theta)[/tex]

Plugging in the values:

[tex]a_{parallel[/tex] = 3.07  [tex]m/s^2[/tex]* sin(32.6°)

[tex]a_{parallel[/tex]≈ 1.66  [tex]m/s^2[/tex]

Therefore, the component of her acceleration that is parallel to the ground is approximately 1.66  [tex]m/s^2[/tex].

For more details regarding acceleration, visit:

https://brainly.com/question/2303856

#SPJ6

A student writes down several steps of scientific method. Put the steps in the best order

Answers

Answer:

Make a hypothesis, conduct an experiment, Analyze the experimental data..

Now consider a different electromagnetic wave, also described by: Ex(z,t) = Eocos(kz - ω t + φ) In this equation, k = 2π/λ is the wavenumber and ω = 2π f is the angular frequency. In this case, though, assume φ = +30o and Eo = 1 kV/m. What is the value of Ex(z,t) when z/λ = 0.25 and ft = 0.125?

Answers

Answer:

Explanation:

Ex(z,t) = Eocos(kz - ω t + φ)

k = 2π/λ  , ω = 2π f

φ = +30° , E₀ = 10³ V .

z/λ = 0.25 , ft = 0.125

Ex(z,t) = Eocos(2πz/λ - 2πf t + φ)

Putting the values given above

Ex(z,t) = 10³ cos ( 2π / 4 - 2π x .125 + 30⁰ )

= 1000cos (90⁰ - 45+30)

= 1000 cos 75

=258.8  V .

an object's resistance to any change in motion is the_________ of the object.

Answers

An object's resistance to any change in motion is the Inertia of the object.

A point charge is located at the center of a thin spherical conducting shell of inner and outer radii r1 and r2, respectively. A second thin spherical conducting shell of inner and outer radii R1 and R2, respectively, is concentric with the first shell. The flux is as follows for the different regions of this arrangement. Ф -10.3 103 N-m2/C for
0 for r<2 4:
-36.8 x 10נ N-m2/c
0 for r > R2
36.8 x 10נ N-m2/c
Determine the magnitude ond sign of the point chorge ond the charge on the surface of the two shels point charge inner shell outer shel.

Answers

Answer:

the magnitude is 7 and sign of the point charge on the surface shell is -13

Explanation:

The amount of friction divided by the weight of an object forms a unit less number called the

Answers

Answer:

Coefficient of friction.

Explanation:

The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

[tex]F=\mu N[/tex]

N is normal force.

[tex]\mu[/tex] = coefficient of friction

[tex]\mu=\dfrac{F}{N}[/tex]

In each pair, select a substance that is a better heat conductor.

1. copper wire / wood 3. water / iron
2. water / air 4. iron / glass

Answers

Answer:

1)copper wire

Explanation:

it is the best electric conductor

Cooper wire / wood
Cooper is a good conductor of heat and electricity. Cooper is used in making wires

A block is supported on a compressed spring, which projects the block straight up in the air at velocity . The spring and ledge it sits on then retract. You can win a prize by hitting the block with a ball. When should you throw the ball and in what direction to be sure the ball hits the block? (Assume the ball can reach the block before the blochk reaches the ground and that the ball is thrown from a height equal to the release position of the block.)
A. At the instant when the block is at the highest point, directed at the spring.
B. At the instant when the block is at the highest point, directed at the block.
C. At the instant when the block leaves the spring, directed at the spring.
D. At the instant when the block leaves the spring, directed at the block.
E. When the block is back at the spring's original position, directed at that position.

Answers

Answer:

B. At the instant when the block is at the highest point, directed at the block.

Explanation:

Motion of an object is the change in the position of the object with respect to time. On the earth, gravity has a great influence on the motion of an object (especially in a vertical direction).

When the block is projected up in the air, it moves with a varying velocity until the velocity becomes zero due to gravity. Which make the object to rest a little in the air (when velocity = gravity) and starts to fall freely.

To ensure hitting the block by the ball, it is thrown at the block when the block is at its highest point in the air. Since the block would be at rest at this instant before it start to fall at a constant acceleration under gravity.

Which of the following statements is true of a gas?
It has a fixed volume, but not a fixed shape
It has closely packed molecules
It can change into a liquid by adding heat
It takes the shape and size of a container

Answers

Answer:

it takes the shape and size of the container that it is in

Explanation:

Answer:

it takes the shape and size of a container

a vector has components x=6 m and y=8 m. what is its magnitude and direction?

Answers

Answer: 10m

Explanation:

The magnitude of the vector would be 10

[tex]\sqrt{6^{2}+8^{2} } =10[/tex]

Sara walks part way around a swimming pool. She walks 50 yards north, then
20 yards east, then 50 yards south. The magnitude of her total displacement
during this walk is
yards.

Answers

Answer:

20 Yards

Explanation:

|---20----|

|            |

| 50       |50

|---D--->|

Start      End

Total displacement(D)  20 yards (East).

What is the period of a wave if the frequency is? 5 Hz

Answers

Answer:  If the woodpecker drums upon a tree 5 times in one second, then the frequency is 5 Hz; each drum must endure for one-fifth a second, so the period is 0.2 s.

someone please help me with this thanks

Answers

The dog has two legs

The International Space Station is about 90 meters across and about 380 kilometers away. One night t appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use serxa to figure out how far away Jupiter is in AU Note: 1 AU= 1.5 x 10-km
a) 6.0 x 10 Au
b) 4.0 AU
c) 9.1 x 1010 AU
d) 4.0 x 10 AU

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The distance is [tex]r_2 = 4 \ AU[/tex]

Explanation:

From the question we are told that

    The size of Jupiter is  [tex]s_2 = 143,000 \ km[/tex]

    The  length of the International Space Station is [tex]r_1 = 380\ km[/tex]

    The  size of the International Space Station is  [tex]s_1 = 90 \ m =0.09 \ km[/tex]

The angular size where the same one night and this angular size is mathematically represented as

      [tex]\theta = \frac{s}{r}[/tex]

Since  [tex]\theta[/tex] is constant

        [tex]\frac{s_1}{r_1} = \frac{s_2}{r_2}[/tex]

substituting values

      [tex]\frac{0.09}{380} = \frac{143000}{r_2}[/tex]

=>   [tex]r_2 = 6.04 * 10^{9} \ km[/tex]

Now we are told to convert to AU and  1 AU  [tex]= 1.5 * 10^8 \ km[/tex]

  So

      [tex]r_2 = \frac{6.04 * 10^8}{1.5*10^{8}}[/tex]

      [tex]r_2 = 4 \ AU[/tex]

Engineers and science fiction writers have proposed designing space stations in the shape of a rotating wheel or ring, which would allow astronauts to experience a sort of artificial gravity when walking along the inner wall of the station's outer rim. (a) Imagine one such station with a diameter of 104 m, where the apparent gravity is 2.20 m/s2 at the outer rim. How fast is the station rotating in revolutions per minute

Answers

Answer:

f = 1.96 revolutions per minute

Explanation:

The formula for the the frequency of revolution of a satellite, to develop an artificial gravity, with the help of centripetal acceleration is given as follows:

f = (1/2π)√(ac/r)

where,

f = frequency of rotation = ?

ac = centripetal acceleration= apparent gravity or artificial gravity = 2.2 m/s²

r = radius of station or satellite = diameter/2 = 104 m/2 = 52 m

Therefore,

f = (1/2π)√[(2.2 m/s²)/(52 m)]

f = (0.032 rev/s)(60 s/min)

f = 1.96 revolutions per minute

I need help physics​

Answers

A
Because the actual was greater than the estimated, therefore they underestimated the population in 2010
A would be the corrext answer you sure do have a lot of questions involving physics lol

A) In the figure below, a cylinder is compressed by means of a wedge against an elastic constant spring = 12 /. If = 500 , determine what the minimum compression in the spring will be so that the pad does not move. Disregard the weight of the blocks and . The coefficient of friction between and the pad and between the floor and the pad is s = 0.4. Consider that the friction between the cylinder and the vertical walls is negligible


Answer: 4.08 cm.


B) Determine the lowest force required to lift the weight of 750 . The static coefficient of friction between and and between and is s= 0.25, and between and is 's = 0.5. Disregard the weight of the shims and .


Answer : 1095.4 N.




Answers

Explanation:

A) Draw free body diagrams of both blocks.

Force P is pushing right on block A, which will cause it to move right along the incline.  Therefore, friction forces will oppose the motion and point to the left.

There are 5 forces acting on block A:

Applied force P pushing to the right,

Normal force N pushing up and left 10° from the vertical,

Friction force Nμ pushing down and left 10° from the horizontal,

Reaction force Fab pushing down,

and friction force Fab μ pushing left.

There are 2 forces acting on block B:

Reaction force Fab pushing up,

And elastic force kx pushing down.

(There are also horizontal forces on B, but I am ignoring them.)

Sum of forces on A in the x direction:

∑F = ma

P − N sin 10° − Nμ cos 10° − Fab μ = 0

Solve for N:

P − Fab μ = N sin 10° + Nμ cos 10°

P − Fab μ = N (sin 10° + μ cos 10°)

N = (P − Fab μ) / (sin 10° + μ cos 10°)

Sum of forces on A in the y direction:

N cos 10° − Nμ sin 10° − Fab = 0

Solve for N:

N cos 10° − Nμ sin 10° = Fab

N (cos 10° − μ sin 10°) = Fab

N = Fab / (cos 10° − μ sin 10°)

Set the expressions equal:

(P − Fab μ) / (sin 10° + μ cos 10°) = Fab / (cos 10° − μ sin 10°)

Cross multiply:

(P − Fab μ) (cos 10° − μ sin 10°) = Fab (sin 10° + μ cos 10°)

Distribute and solve for Fab:

P (cos 10° − μ sin 10°) − Fab (μ cos 10° − μ² sin 10°) = Fab (sin 10° + μ cos 10°)

P (cos 10° − μ sin 10°) = Fab (sin 10° + 2μ cos 10° − μ² sin 10°)

Fab = P (cos 10° − μ sin 10°) / (sin 10° + 2μ cos 10° − μ² sin 10°)

Sum of forces on B in the y direction:

∑F = ma

Fab − kx = 0

kx = Fab

x = Fab / k

x = P (cos 10° − μ sin 10°) / (k (sin 10° + 2μ cos 10° − μ² sin 10°))

Plug in values and solve.

x = 500 N (cos 10° − 0.4 sin 10°) / (12000 (sin 10° + 0.8 cos 10° − 0.16 sin 10°))

x = 0.0408 m

x = 4.08 cm

B) Draw free body diagrams of both blocks.

Force P is pushing block A to the right relative to the ground C, so friction force points to the left.

Block A moves right relative to block B, so friction force on A will point left.  Block B moves left relative to block A, so friction force on B will point right (opposite and equal).

Block B moves up relative to the wall D, so friction force on B will point down.

There are 5 forces acting on block A:

Applied force P pushing to the right,

Normal force Fc pushing up,

Friction force Fc μ₁ pushing left,

Reaction force Fab pushing down and left 15° from the vertical,

and friction force Fab μ₂ pushing up and left 15° from the horizontal.

There are 5 forces acting on block B:

Weight force 750 n pushing down,

Normal force Fd pushing left,

Friction force Fd μ₁ pushing down,

Reaction force Fab pushing up and right 15° from the vertical,

and friction force Fab μ₂ pushing down and right 15° from the horizontal.

Sum of forces on B in the x direction:

∑F = ma

Fab μ₂ cos 15° + Fab sin 10° − Fd = 0

Fd = Fab μ₂ cos 15° + Fab sin 15°

Sum of forces on B in the y direction:

∑F = ma

-Fab μ₂ sin 15° + Fab cos 10° − 750 − Fd μ₁ = 0

Fd μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750

Substitute:

(Fab μ₂ cos 15° + Fab sin 15°) μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750

Fab μ₁ μ₂ cos 15° + Fab μ₁ sin 15° = -Fab μ₂ sin 15° + Fab cos 15° − 750

Fab (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°) = -750

Fab = -750 / (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°)

Sum of forces on A in the y direction:

∑F = ma

Fc + Fab μ₂ sin 15° − Fab cos 15° = 0

Fc = Fab cos 15° − Fab μ₂ sin 15°

Sum of forces on A in the x direction:

∑F = ma

P − Fab sin 15° − Fab μ₂ cos 15° − Fc μ₁ = 0

P = Fab sin 15° + Fab μ₂ cos 15° + Fc μ₁

Substitute:

P = Fab sin 15° + Fab μ₂ cos 15° + (Fab cos 15° − Fab μ₂ sin 15°) μ₁

P = Fab sin 15° + Fab μ₂ cos 15° + Fab μ₁ cos 15° − Fab μ₁ μ₂ sin 15°

P = Fab (sin 15° + (μ₁ + μ₂) cos 15° − μ₁ μ₂ sin 15°)

First, find Fab using the given values.

Fab = -750 / (0.25 × 0.5 cos 15° + 0.25 sin 15° + 0.5 sin 15° − cos 15°)

Fab = 1151.9 N

Now, find P.

P = 1151.9 N (sin 15° + (0.25 + 0.5) cos 15° − 0.25 × 0.5 sin 15°)

P = 1095.4 N

A tank with a constant volume of 3.72 m3 contains 22.1 moles of a monatomic ideal gas. The gas is initially at a temperature of 300 K. An electric heater is used to transfer 4.5 × 104 J of energy into the gas. It may help you to recall that CV = 12.47 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.

a) What is the temperature of the gas after the energy is added?___K

b) What is the change in pressure of the gas?____Pa

c) How much work was done by the gas during this process?____J

Answers

Answer:

a) 463.29 K

b) 8065.65 Pa

c) 0 J

Explanation:

The parameters given are;

Volume of the tank, V = 3.72 m³

Number of moles of gas present in the tank, n = 22.1 moles

Temperature of the gas before heating, T₁ = 300 k

Heat added to the gas, ΔQ = 4.5 × 10⁴ J

Specific heat capacity at constant volume, [tex]c_v[/tex], for monatomic gas = 12.47 J/K/mole

Avogadro's number = 6.022 × 10²³ particles per mole

a) ΔQ = n × [tex]c_v[/tex] × ΔT

Where:

ΔT = T₂ - T₁

T₂ = Final temperature of the gas

Hence, by plugging in the values, we have;

4.5 × 10⁴ = 22.1 × 12.47 × (T₂ - 300)

[tex]T_{2} - 300 = \frac{4.5\times 10^{4}}{22.1\times 12.47}[/tex]

T₂ = 300 + 163.29 = 463.29 K

b) The pressure of the gas is found from the relation;

P×V = n×R×T

[tex]P = \dfrac{n \times R \times T}{V}[/tex]

Where:

P = Pressure of the gas

R = Universal gas constant = 8.3145 J/(mol·K)

T = Temperature of the gas

V = Volume of the gas = 3.72 ³ (constant)

n = Number of moles of gas present = 22.1 moles (constant)

Hence the change in pressure is given by the relation;

[tex]\Delta P = \dfrac{n \times R \times (T_2 - T_1)}{V} = \dfrac{n \times R \times \Delta T}{V}[/tex]

Plugging in the values, we have;

[tex]\Delta P = \dfrac{22.1 \times 8.3145 \times 163.29}{3.72} = 8065.65 \, Pa[/tex]

c) Work done, W, by the gas is given by the area under the pressure to volume graph which gives;

W = f(P) × ΔV

The volume given in the question is constant

∴ ΔV = 0

Hence, W =  f(P) × 0 = 0 J

No work done by the gas during the process.

You are comparing a reaction that produces a chemical change and one that produces a physical change. What evidence could you use to determine which type of change is occurring?

Answers

Answer: A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding. Often, physical changes can be undone, if energy is input.

Explanation: hope this helps have a good day

Answer:

If the reaction is a chemical change, new substances with different properties and identities are formed. This may be indicated by the production of an odor, a change in color or energy, or the formation of a solid.

What is the highest point at which weather will generally occur?

Answers

Answer:

At thestratosphere: it 20- 25km

6. When a positive charge is released and moves along an electric field line, it moves to a position of A) lower potential and lower potential energy. B) lower potential and higher potential energy. C) higher potential and lower potential energy. D) higher potential and higher potential energy.

Answers

Answer:

Since you would have to do work on the charge to bring it back to its original position, the charge moves to a position of lower potential and lower potential energy.

The positive charge is released from a point such that it will move along an uniform electric field to the position of lower potential and lower potential energy. Therefore, option (A) is correct,

When a positive charge (say +Q) is released from a point (say A) and moves in an uniform electric field to reach the point (say B), then some work is done on the charge. This work done is given as,

[tex]W=+Q(V_{A}-V_{B})[/tex]

Here, [tex]V_{A}[/tex] and [tex]V_{B}[/tex] are the potential differences between the points A and B respectively..

This means the charge is moving from higher potential to lower potential. And since it is moving along the uniform electric field, therefore the electric potential energy of charged system is decreased.

Thus, we conclude that on releasing the positive charge from a point, it starts moving along the electric field towards the direction of lower electric potential and lower electric potential energy. Hence, option (A) is correct.

Learn more about electric potential and electric potential energy here:

https://brainly.com/question/12645463?referrer=searchResults

please help
Complete the first and second sentences, choosing the correct answer from the given ones.
1. A temperature of 100 K corresponds on a Celsius scale to 100 ° C / 0 ° C / 173 ° C / –173 ° C.
2. At 50 ° C, it corresponds to a Kelvin scale of 150 K / 323 K / 273 K / 223 K.

Answers

1)  100 ° C

2) 323 K

hope it helps youuuuuu

Of one of the planets becomes a black hole , what would the escape speed be?

Answers

Answer:

If, instead, that rocket was on a planet with the same mass as Earth but half the diameter, the escape velocity would be 15.8 km/s Any object that is smaller than its Schwarzschild radius is a black hole – in other words, anything with an escape velocity greater than the speed of light is a black hole.

Explanation:

brainlies plssssssssssssssssss!

N capacitors are connected in parallel to form a "capacitor circuit". The capacitance of first capacitor is C, second one is C/2 and third one is C/4, forth one is C/8 and so on. Namely, capacitance of a capacitor is one-half of the previous one. What is the equivalent capacitance of this parallel combination when N goes to inifinity?

Answers

Answer:

2C

Explanation:

The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.

So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.

Using the formula for the sum of the infinite terms of a geometric series, we have:

Sum = First term / (1 - rate)

Sum = C / (1 - 0.5)

Sum = C / 0.5 = 2C

So the equivalent capacitance of this parallel connection is 2C.

Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed uniformly over their inner surfaces. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest.
A. 1, 2, 3, 4, 5
B. 2, then 1, 3, and 4 tied, then 5
C. 1, 4, and 5 tie, then 2 and 3 tie
D. 2 and 3 tie, then 1 and 4 tie, then 5
E. 2 and 3 tie, then 1, 4, and 5 tie

Answers

Answer:

The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie

Explanation:

Solution

The electric field due to sheets E₁ positive =б/2E₀

E₂ is negative = б/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction

At the point 1, the net field = -E₁ + E₂ =0

At the point A, the net field = -E₁ - E₂ = 0

Now,

At nay point inside between them, the electric field is seen to be at the same direction.

At the 2, 3 points the field is seen at the right

Thus,

E net = E₁ + E₂

= б/2E₀ + σ/2E₀

=б/E₀

Note: Kindly find an attached copy of the complete question to the solution

The correct answer is option C

The rank of the points according to the magnitude of the electric field is 1, 4, and 5 tie, then 2 and 3 tie

The magnitude of the electric field:

Let sheet 1 has positive surface charge density and sheet 2 has a negative surface charge density

The electric field (without direction) due to sheets will be

E₁ =σ/2E₀

E₂= σ/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets is given by:

E = E₁ - E₂

E = σ/2E₀ - σ/2E₀

since the positive charge plate will have electric field lines away from the sheet and the negative charge plate will have electric field lines towards the sheet

E = 0

Now,

At points 2, 3 which are between the plates,

The net electric field is:

E = E₁ + E₂

since the electric field due to both the plates will be from positive to negative ( towards the negatively charged plate)

E = σ/2E₀ + σ/2E₀

E = σ/E₀

Learn more about surface charge density:

https://brainly.com/question/8966223?referrer=searchResults

Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest.
Car A: 500 kg, 10 m/s,
Car B: 2000 kg, 5 m/s,
Car C: 500 kg, 20 m/s,
Car D: 1000 kg, 20 m/s,
Car E: 4000 kg, 5 m/s, and
Car F: 1000 kg, 10 m/s.
(a) Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest.
(b) Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest.

Answers

Answer:

a)Car E = Car D  > (Car F = Car B = Car C) > Car A

b)Car E = Car D  > (Car F = Car B = Car C) > Car A

Explanation:

Car A: mass = 500 kg; speed = 10 m/s

Car B: mass = 2000 kg;speed = 5 m/s

Car C:mass = 500 kg; speed = 20 m/s

Car D: mass = 1000 kg; speed = 20 m/s

Car E:mass = 4000 kg; speed = 5 m/s

Car F: mass = 1000 kg; speed = 10 m/s

Part a) Now we know that momentum of each car is product of mass and velocity , so we will have

CarA:

[tex]P_1 = m \times v\\P_1 = (500)(10)\\P_1 = 5 \times 10^3 kg m/s[/tex]

Car B:

[tex]P_2 = m v\\P_2 = (2000)(5)\\P_2 = 10^4 kg m/s[/tex]

Car C:

[tex]P_3 = m v\\P_3 = (500)(20)\\P_3 = 10^4 kg m/s[/tex]

Car D:

[tex]P_4 = m v\\P_4 = (1000)(20)\\P_4 = 2\times 10^4 kg m/s[/tex]

Car E:

[tex]P_5 = m v\\P_5 = (4000)(5)\\P_5 = 2\times 10^4 kg m/s[/tex]

Car F:

[tex]P_6 = m v\\P_6 = (1000)(10)\\P_6 = 10^4 kg m/s[/tex]

So the momentum is given as ,

Car E = Car D  > (Car F = Car B = Car C) > Car A

Part b)Impulse is given as change in momentum so here we can say that final momentum of all the cars will be zero as they all stops and hence the impulse is same as initial momentum of the car

so the order of impulse from largest to least is given as

Car E = Car D  > (Car F = Car B = Car C) > Car A

A beam of light is incident upon a flat piece of glass (n = 1.50) at an angle of incidence of 30.00. Part of the beam is transmitted and part is reflected. Determine the angle between the reflected and transmitted rays

Answers

Answer:

130.528779365 degrees

Explanation:

The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.

n1/n2 = sin(theta2)/sin(theta1)

let theta1 be 30 degrees, and n1 be the refractive index of air = 1

1/1.5 = sin(theta2)/sin(30deg)

solve:

sin(theta2) = 2/3 sin(30deg) = 1/3

theta2 = arcsin (1/3) = 19.4712206345 degrees

The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.

Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.

Angle between = 180-30-19.4712206345 = 130.528779365 degrees

The angle between the reflected and transmitted rays 130.5287 degrees

What is the refraction of light?

The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.

[tex]\dfrac{n_1}{n_2} = \dfrac{sin(\theta_2)}{sin(\theta_1)}[/tex]

let [tex]\theta_1[/tex] be 30 degrees, and n1 be the refractive index of air = 1

[tex]\dfrac{1}{1.5} = \dfrac{sin(\theta_2)}{sin(30)}[/tex]

solve:

[tex]sin(\theta_2) = \dfrac{2}{3} sin(30) = \dfrac{1}{3}[/tex]

[tex]\theta_2 = sin ^{-1}\dfrac{1}{3} = 19.4712 \ degrees[/tex]

The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.

Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.

Angle between = 180-30-19.4712206345 = 130.528779365 degrees

Hence the angle between the reflected and transmitted rays 130.5287 degrees

To know more about the Refraction of light follow

https://brainly.com/question/10729741

Other Questions
Mitchell and his lab partner were conducting a titration experiment. Their goal was to neutralize 0.50 mol NaOH. How many moles of H2SO4 are needed to complete the neutralization? A) 0.25 mol B) 0.50 mol C) 1.00 mol D) 2.00 mol What symbols are associated with Antiope?? Find the equation of the line that is perpendicular to y = -3/4x+1 and contains the point (9,12). what are the eight factorsCommerical agriculture 81. Find the pH of each mixture of acids. a. 0.115 M in HBr and 0.125 M in HCHO2 b. 0.150 M in HNO2 and 0.085 M in HNO3 c. 0.185 M in HCHO2 and 0.225 M in HC2H3O2 d. 0.050 M in acetic acid and 0.050 M in hydrocyanic acid Which is one way that waves erode coastlines?O Back-and-forth movement loosens sediment and rock.O Large rocks are picked up and deposited in new areas.O Continuous impacts build up sediment and rock.O Loose sediment is picked up and blown to other locations. What is the slope of a line that is perpendicular to the line y = x + 5? Dell Computer buys computer chips from Intel for the purpose of making computers to be sold to consumers and other organizations. Dell is an example of which type of organizational buyer? a. Intermediary b. Producer c. Wholesaler d. Institution Describe how culture can affect the labor market. Which of these pieces of safety equipment should be worn when operating a chainsaw Which natural resource is the most widely distributed across the continent? What is the value of n in the equation (2n + 4) + 6 = -9 + 4(2n + 1)?n =the answer is just 1. What was the mean number of peas in a pod 2 4 5 6 6 7 8 10 14 18 What is the solution set of the quadratic inequality 6x^2+10? Ryan got $25 for his birthday. His dad told him not to spend it all in one place, so he wants to divide it up evenly between 5 candy stores. How much money can Ryan spend in each store, if he spends all of his birthday money? Some books of the law also contain some ?History Or Prophesy Given f(x) = -x 4, solve for x when f(x) = 6. Need by like 10 minutes Mantle material rises in convection currents because heated materials become more dense.True Or False Find the volume of the pyramid.