Two identical charges,2.0m apart,exert forces of magnitude 4.0 N on each other.What is the value of either charge?

Answers

Answer 1

Answer:

[tex]\large \boxed{42\, \mu \text{C}}$[/tex]

Explanation:

The formula for the force exerted between two charges is

[tex]F=k \dfrac{ q_1q_2}{r^2}[/tex]

where k is the Coulomb constant.

The charges are identical, so we can write the formula as

[tex]F=k\dfrac{q^{2}}{r^2}[/tex]

[tex]\begin{array}{rcl}\text{4.0 N}& = & 8.988 \times 10^{9}\text{ N$\cdot$m$^{2}$C$^{-2}$} \times \dfrac{q^{2}}{\text{(2.0 m)}^{2}}\\\\4.0 & = & 2.25 \times 10^{9}\text{ C$^{-2}$} \times q^{2}\\\\q^{2} & = & \dfrac{4.0}{2.25 \times 10^{9}\text{ C$^{-2}$}}\\\\& = & 1.78 \times 10^{-9} \text{ C}^{2}\\q & = & 4.2 \times 10^{-5} \text{ C}\\& = & 42\, \mu \text{C}\\\end{array}\\\text{Each charge has a value of $\large \boxed{\mathbf{42\, \mu }\textbf{C}}$}[/tex]


Related Questions

Assume that the coefficient of static friction between the board and the box is not known at this point. What is the magnitude of the acceleration of the box in terms of the friction force f?

Answers

Answer:

Explanation:

From Newton's second Law of Motion,

F = ma

Ff + F = ma

Where F is the applied force, Ff is the frictional force, a is the acceleration and m is the mass of the object or box.

Magnitude of the acceleration:

a = Ff+F/m

This must act in the direction of F or the box would slide or accelerate off the negative side of the board (taking the direction of F to be positive

A compact disk, which has a diameter of 12.0 cm, speeds up uniformly from zero to 4.30 rev/s in 3.05 s . Part A What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 2.00 rev/s

Answers

Answer:

[tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]

Explanation:

Angular acceleration

[tex]\begin{aligned}

\alpha &=\frac{\left(\omega_{f}-\omega_{i}\right)}{t} \\

\omega_{i} &=0 \\

\omega_{f} &=4.30 \mathrm{rev} / \mathrm{s} \\

&=4.30 \times 2 \pi \mathrm{rad} / \mathrm{s} \\

&=27.02 \mathrm{rad} / \mathrm{s} \\

\alpha &=\frac{(27.02-0)}{3.15} \\

&=8.57 \mathrm{m} / \mathrm{s}^{2}

\end{aligned}[/tex]

a)Tangential acceleration

[tex]\begin{aligned}

a &=r \alpha \\

&=\frac{12}{2} \times 10^{-2} \times 8.57 \\

a &=0.51 \mathrm{m} / \mathrm{s}^{2}

\end{aligned}[/tex]

The tangential acceleration of the disc is [tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]

This question involves the concepts of the equations of motion for angular motion.

The tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed reaches 2 rev/s will be "0.532 m/s²".

First, we will use the first equation of motion for the angular motion to find out the angular acceleration:

[tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]

where,

[tex]\alpha[/tex] = angular acceleration = ?

[tex]\omega_f[/tex] = final angular speed = (4.3 rev/s)[tex](\frac{2\pi\ rad}{1\ rev})[/tex] = 27.02 rad/s

[tex]\omega_i[/tex] = initial angular speed = 0 rad/s

t = time taken = 3.05 s

Therefore,

[tex]\alpha =\frac{27.02\ rad/s-0\ rad/s}{3.05\ s}\\\\\alpha= 8.86\ rad/s^2[/tex]

Now, the tangential acceleration can be given as follows:

[tex]a=r\alpha\\a=(\frac{diameter}{2})(8.86\ rad/s^2)\\\\a=(\frac{0.12\ m}{2})(8.86\ rad/s^2)\\\\[/tex]

a = 0.532 m/s²

Learn more about the angular motion here:

brainly.com/question/14979994?referrer=searchResults

The attached picture shows the angular equations of motion.

An ideal photo-diode of unit quantum efficiency, at room temperature, is illuminated with 8 mW of radiation at 0.65 µm wavelength. Calculate the current and voltage output when the detector is used in the photo-conductive and photovoltaic modes respectively. The reverse saturation current (Is) is 9 nA.

Answers

Answer:

I = 4.189 mA    V = 0.338 V

Explanation:

In order to do this, we need to apply the following expression:

I = Is[exp^(qV/kT) - 1]   (1)

However, as the junction of the diode is illuminated, the above expression changes to:

I = Iopt + Is[exp^(qV/kT) - 1]   (2)

Now, as the shunt resistance becomes infinite while the current becomes zero, we can say that the leakage current is small, and so:

I ≅ Iopt

Therefore:

I ≅ I₀Aλq / hc  (3)

Where:

I₀A = Area of diode (radiation)

λ: wavelength

q: electron charge (1.6x10⁻¹⁹ C)

h: Planck constant (6.62x10⁻³⁴ m² kg/s)

c: speed of light (3x10⁸ m/s)

Replacing all these values, we can get the current:

I = (8x10⁻³) * (0.65x10⁻⁶) * (1.6x10⁻¹⁹) / (6.62x10⁻³⁴) * (3x10⁸)

I = 4.189x10⁻³ A or 4.189 mA

Now that we have the current, we just need to replace this value into the expression (2) and solve for the voltage:

I = Is[exp^(qV/kT) - 1]

k: boltzman constant (1.38x10⁻²³ J/K)

4.189x10⁻³ = 9x10⁻⁹ [exp(1.6x10⁻¹⁹ V / 1.38x10⁻²³ * 300) - 1]

4.189x10⁻³ / 9x10⁻⁹ = [exp(38.65V) - 1]

465,444.44 + 1  = exp(38.65V)

ln(465,445.44) = 38.65V

13.0508 = 38.65V

V = 0.338 V

A corpse is discovered in a room that has its temperature held steady at 25oC. The CSI ocers ar- rive at 2pm and the temperature of the body is 33oC. at 3pm the body's temperature is 31oC. Assuming Newton's law of cooling and that the temperature of the living person was 37oC, what was the approximate time of death

Answers

Answer: Around 0:35 Pm or 12:35 Am

Explanation:

The equation that describes the cooling of objects can be written as:

T(t) = Ta + (Ti - Ta)*e^(k*t)

Where Ta is the ambient temperature, here Ta = 25°C.

Ti is the initial temperature of the body, we have Ti = 37°C.

t is the time.

k is a constant.

So our equation is:

T(t) = 25°C +12°C*e^(k*t)

at 2pm, the temperature was 33°C

at 3pm, the temperature was 31°C.

we want to find the hour where we have our t = 0, suppose this hour is X.

then we can write our times as:

2pm ---> 2 - X

3pm ----> 3 - X

and our equations are:

33°C = 25°C + 12°C*e^(k2 - k*X)

31° = 25°C + 12°C*e^(k3 - k*X)

So we have two equations and two variables, let's solve the system.

first, simplify it a bit, for the first eq:

33 - 25 = 12*e^(k2 - k*X)

8/12 = e^(k2 - k*X)

ln(8/12) = k*2 - k*X

for the second equation we have:

31 - 25 = 12*e^(k3 - k*X)

6/12 = e^(k3 - k*X)

ln(6/12) = k*3 - k*X

So our equations are:

1) ln(2/3) = 2*k - X*k

2) ln(1/2) = 3*k - X*k

First, let's isolate one of the variables in one of the equations. let's isolate k in the first equation.

ln(2/3)/(2-X) = k

now we can replace it in the second equation:

ln(1/2) = 3*ln(2/3)/(2 - X) - X*ln(2/3)/(2-X)

now let's solve it for X, i will take a = ln(1/2) and b = ln(2/3) so it is easier to read.

a = 3*b/(2 - X) - X*b/(2 - X)

a*(2 - X) = 3*b - X*b

2a - aX = 3b - Xb

X(a - b) = 2a - 3b

X = (2*ln(1/2) - 3*ln(2/3))/(ln(1/2) - ln(2/3)) = 0.590

now, knowing that one hour has 60 minutes, then this is:

0.59*60m = 35 minutes

So the hour of death is 0:35 Pm or 12:35 Am

URGENT : Which of the following is the most stable isotope? Explain.


Answers

Answer:

Plutonium–238

Explanation:

The stability of isotopes is largely dependent on their half-life.

Half life of an isotope is the time taken for the initial mass of the isotope to be halfed or we can say that the half-life of an isotope is the time taken for the mass of the isotope to become half the initial mass.

From the above definition, we discovered that if the time taken for the mass of the isotope to become half its initial mass is long, then the isotope must be very stable. On the other hand, if the time taken to become half its initial mass is short, then the isotope is unstable because.

We can thus say that, the longer the half-life the more stable the isotope and the shorter the half-life, the less stable the isotope will be.

Considering the table given in the question above and with the ideas we have obtained from the explanation above, we can see that Plutonium–238 has the longest half-life. Therefore Plutonium–238 will be more stable.

The Z0 boson, discovered in 1985, is the mediator of the weak nuclear force, and it typically decays very quickly. Its average rest energy is 91.19 GeV, but its short lifetime shows up as an intrinsic width of 2.5 GeV. what is the lifetime of this particle?

Answers

Answer:

The lifetime of the particle is  [tex]\Delta t = 2.6*10^{-25} \ s[/tex]

Explanation:

From the question we are told that

    The average rest energy is [tex]E = 91.19 \ GeV = 91.19GeV * \frac{1.60 *10^{-10} J }{1GeV} = 1.46 *10^{-8}J[/tex]

    The intrinsic width is  [tex]\Delta E =2.5eV = 2.5GeV * \frac{1.60 *10^{-10}J }{1GeV} = 4*10^{-10} J[/tex]

The lifetime is mathematically represented as

     [tex]\Delta t = \frac{h}{\Delta E}[/tex]

Where h is the Planck's constant with a value of  [tex]1.055*10^{-34} \ J\cdot s[/tex]  

substituting values

    [tex]\Delta t = \frac{1.055*10^{-34}}{4 *10^{-10}}[/tex]

     [tex]\Delta t = 2.6*10^{-25} \ s[/tex]

Three identical 6.0-kg cubes are placed on a horizontal frictionless surface in contact with one another. The cubes are lined up from left to right and a force is applied to the left side of the left cube causing all three cubes to accelerate to the right at 2.0 m/s2. What is the magnitude of the force exerted on the middle cube by the left cube in this case

Answers

Answer:

24 Newtons

Explanation:

The force exerted in the middle cube needs to be enough to move the middle cube and the right cube with an acceleration of 2 m/s2.

The mass of those two cubes combined is 6 + 6 = 12 kg

So, using the following equation, we can find the force:

Force = mass * acceleration

Force = 12 * 2

Force = 24 Newtons

The temperature at the surface of the Sun is approximately 5,300 K, and the temperature at the surface of the Earth is approximately 293 K. What entropy change of the Universe occurs when 6.00 103 J of energy is transferred by radiation from the Sun to the Earth?

Answers

Answer:

The entropy change of the Universe that occurs is 19.346 J/K

Explanation:

Given;

temperature of the sun, [tex]T_s[/tex] = 5,300 K

temperature of the Earth, [tex]T_E[/tex] = 293 K

radiation energy transferred by the sun to the earth, E = 6000 J

The sun loses Q of heat and therefore decreases its entropy by the amount

[tex]\delta S_{sun} = \frac{-Q}{T_s}[/tex]

The earth gains Q of heat and therefore increases its entropy by the amount

[tex]\delta S_{Earth} = \frac{-Q}{T_E}[/tex]

The total entropy change is:

[tex]\delta S_{Earth} + \delta S_{sun} = \frac{Q}{T_E} -\frac{Q}{T_S} \\\\ = Q(\frac{1}{T_E} -\frac{1}{T_S} )\\\\= 6000(\frac{1}{293} -\frac{1}{5300} )\\\\=6000(0.0032243)\\\\= 19.346 \ J/K[/tex]

Therefore, the entropy change of the Universe that occurs is 19.346 J/K

When jumping straight down, you can be seriously injured if you land stiff-legged. One way to avoid injury is to bend your knees upon landing to reduce the force of the impact. A 73.0 kg man just before contact with the ground has a speed of 6.46 m/s. In a stiff-legged landing he comes to a halt in 2.07 ms. Calculate the average net force that acts on him during this time

Answers

Answer:

Explanation:

The man comes to halt due to reaction force acting on him in opposite direction . If R be the reaction force

impulse by net  force = change in momentum

Net force = R - mg , mg is weight of the man .

( R-mg ) x 2. 07 x 10⁻³ = 73 x 6.46 - 0

R - mg = 227.81 x 10³

Average net force = 227.81 x 10³ N .

A soccer player is benched for being late to the game. In a fit of anger, she drops her ball from the top of the Physics building. It falls 4.9 meters after 1.0 second has elapsed. How much farther does it fall in the next 2.0 seconds

Answers

Answer:

The distance is  [tex]S = 39.2 \ m[/tex]

Explanation:

From the question we are told that

    The distance covered after t = 1 s is  [tex]d = 4.9 \ m[/tex]

   

According to the equation of motion

      [tex]v^2 = u^2 + 2ad[/tex]

 Now  u  =  0 m/s  since before the drop the ball was at rest

     [tex]v^2 = 2ad[/tex]

here  [tex]a =g = 9.8 \ m/s^2[/tex]

    So

       [tex]v = 9.8 m/s[/tex]

Also from equation of motion we have that

     [tex]S = ut + \frac{1}{2} at^2[/tex]

Now at  t = 2 s , as given from the question

  Then  u =  v = 9.8 m/s

And

     [tex]S = 9.8 * 2 + \frac{1}{2} * (9.8) * (2^2)[/tex]

     [tex]S = 9.8 * 2 + \frac{1}{2} * (9.8) * (2^2)[/tex]

    [tex]S = 39.2 \ m[/tex]

     

g 95 N force exerted at the end of a 0.50 m long torque wrench gives rise to a torque of 15 N • m. What is the angle (assumed to be less than 90°) between the wrench handle and the direction of the applied force?

Answers

Answer:

Angle = 18.41°

Explanation:

Torque = F•r•sin θ

where;

F = force

r = distance from the rotation point

θ = the angle between the force and the radius vector.

We are given;

Torque = 15 N.m

F = 95 N

r = 0.5 m

Thus, plugging in the relevant values ;

15 = 95 × 0.5 × sin θ

sin θ = 15/(95 × 0.5)

sin θ = 0.3158

θ = sin^(-1)0.3158

θ = 18.41°

why is India called peninsula?​

Answers

Answer:

India is a peninsula.

Explanation:

India is called as Indian Peninsula because it is surrounded by the Indian ocean on the south, the Arabian sea on the west and the Bay of Bengal on the east.

Because water surrounds it on all three sides.

In the Life Cycle of Stars diagram, what stage does letter J represent?
A.) white dwarf

B.) black dwarf

C.) black hole

D.) neutron star

Which letters in the Life Cycle of Stars diagram represent stars on the main sequence?

A.) F & I

B.) C & G

C.) A & E

D.) B & D

In the Life Cycle of Stars diagram, what stage does letter L represent?

A.) neutron star

B.) black hole

C.) white dwarf

D.) black dwarf

In the Life Cycle of Stars diagram, what stage does letter I represent?

A.) neutron star

B.) black dwarf

C.) black hole

D.) white dwarf

In the Life Cycle of Stars diagram, what does letter D represent?

A.) a high mass star

B.) a white dwarf

C.) a cool star

D.) a low mass star

In the Life Cycle of Stars diagram, what stage does letter C represent?

A.) nuclear fusion

B.) a supernova

C.) a planetary nebula

D.) protostar formation

Which letter in the Life Cycle of Stars diagram represents a star forming region of space?

A.) M

B.) H

C.) J

D.) G

Which letter in the Life Cycle of Stars diagram represents a planetary nebula?
Group of answer choices

A.) G

B.) H

C.) L

D.) M

Answers

ANSWER: num 1 is black hole

A woman weighs 129 lb. If she is standing on a spring scale in an elevator that is traveling downward, but slowing up, the scale will read:___________.
A) more than 129 lb
B) 129 lb
C) less than 129 lb
D) It is impossible to answer this question without knowing the acceleration of the elevator.

Answers

Answer:

C) less than 129 lb.

Explanation:

Let the elevator be slowing up with magnitude of a . That means it is accelerating downwards  with magnitude a .

If R be the reaction force

For the elevator is going downwards with acceleration a

mg - R = ma

R = mg - ma

R measures its apparent weight . Spring scale will measure his apparent weight.

So its apparent weight is less than 129 lb .

Determined to test the law of gravity for himself, a student walks off a skyscraper 180 m high, stopwatch in hand, and starts his free fall (zero initial velocity). Five seconds later, Superman arrives at the scene and dives off the roof to save the student.
a) Superman leaves the roof with an initial velocity that he produces by pushing himself downward from the edge of the roof with his legs of steel. He then falls with the same acceleration as any freely falling body. What must the value of the initial velocity be so that Superman catches the student just before they reach the ground?
b) On the same graph, sketch the positions of the student and of Superman as functions of time. Take Superman's initial speed to have the value calculated in part (a).
c) If the height of the skyscraper is less than some minimum value, even Superman can't reach the student before he hits the ground. What is this minimum height?

Answers

Answer:

a)  v₀ = - 164.62 m / s , c) y = 122.5 m

Explanation:

We can solve this exercise using the free fall kinematic relations.

We put our reference system on the floor, so the height of the skyscraper is y₀ = 180m and the floor level is y = 0 m

 

For the boy

         y = y₀ + v₀ t - ½ g t²

with free fall its initial speed is zero

        y = ½ g t2

For superman

        y = y₀ + v₀ (t-5) - ½ g (t-5)²

how superman grabs the lot just before hitting the ground

we look for the time it takes the boy down

         t = √ (2 y₀ / g)

         t = √ (2 180 / 9,8)

         t = 6.06 s

in the equation for superman, we clear the volume and calculate

         v₀ (t-5) = -y₀ + ½ g (t-5)²

         v₀ (6.06 -5) = -180 + ½ 9.8 (6.06 -5)²

         v₀ 1.06 = -174.49

         v₀ = - 174.49 / 1.06

         v₀ = - 164.62 m / s

the negative sign indicates that the initial speed is down

b) to graph the position of the two we use the table

  t (s)      Y_boy (m)   Y_superman (m)

    0             180                 180

   1              175.1               180

   5              57.5              180

   6                3.6                10.18

see attachment for the two curves

c) calculate the height that falls a lot in the 5 seconds (t = 5)

           y = -1/2 g t²

           y = ½ 9.8 5²

           y = 122.5 m

for this height superman has not yet left the skyscraper, so the boy hits the ground

A ball is thrown straight up with an initial speed of 30 m/s. How long will it take to reach the top of its trajectory, and high will the ball go?

Answers

Answer:

About 3.06 seconds

Explanation:

[tex]v_f=v_o+at[/tex]

Since at the peak of its trajectory, the ball will have no velocity, you can write the following equation:

[tex]0=30+(-9.81)t\\\\-30=-9.81t\\\\t\approx 3.06s[/tex]

Hope this helps!

A student is given a small object that is hanging from a ring stand on a nylon thread. The student attempts to charge the object electrically in several ways. Based upon his results, he concludes the object is made of an insulating material. Which set of results must he have collected?

A. The object could be charged only by contact.

B. The object could be charged by either contact or induction.

C. The object could be charged by either contact or polarization.

D. The object could be charged only by polarization.

Answers

Answer:(a)

Explanation:

Student must have known that insulators can only be charged when they are rubbed against each other. In this process, one becomes electrically negative while other becomes electrically positive such that both have the same magnitude. The one which gains electrons becomes electrically negative due to the transfer of electrons while others lose the electron becomes positive due to the transfer of an electron to another body.

A light spring having a force constant of 115 N/m is used to pull a 9.00 kg sled on a horizontal frictionless ice rink. The sled has an acceleration of 2.10 m/s2. Part A By how much does the spring stretch if it pulls on the sled horizontally

Answers

Answer:

Stretch in the spring = 0.1643 (Approx)

Explanation:

Given:

Mass of the sled (m) = 9 kg

Acceleration of the sled (a) = 2.10 m/s ²

Spring constant (k) = 115 N/m

Computation:

Tension force in the spring  (T) = ma

Tension force in the spring  (T) = 9 × 2.10

Tension force in the spring  (T) = 18.9 N

Tension force in the spring = Spring constant (k) × Stretch in the spring

18.9 N = 115 N  × Stretch in the spring

Stretch in the spring = 18.9 / 115

Stretch in the spring = 0.1643 (Approx)

A student in the front of a school bus tosses a ball to another student in the back of the bus while the bus is moving forward at constant velocity. The speed of the ball as seen by a stationary observer in the street:_________

a. is less than that observed inside the bus.
b. is the same as that observed inside the bus
c. may be either greater or smaller than that observed inside the bus.
d. may be either greater, smaller, or equal to that observed inside the bus.
e. is greator than that observed inside the bus

Answers

Answer:

d

Explanation:

good question. now the bus is moving in constant velocity . a student in front tosses a ball to the student in back. but we dont know the speed at which the student tosses a ball. we have to assume the speed

assume the speed of ball is slightly less than the speed of bus. in this case the stationary observer sees the ball in slower speed than the one inside the bus.

so a is correct

now assume the speed of ball is 1/2 the speed of bus. here stationary observer sees the ball the same speed as the one in bus observe

b is correct

assume the speed of ball is very small than the speed of bus . in this case the stationary observer see in grater speed than the student in bus

e also correct

so correct answer is d. it depends on the speed of ball tossed by the student in front.

4. Mrs. Parker was married to her husband for
30 years. They lived together with their two
children,
(A) Single-parent family
(B) Nuclear family
(C) Blended family
(D) Extended family
I think it’sd

Answers

Answer:B ) Nuclear family

Explanation:

The answer is B because Nuclear family mean a family with two kids and Mrs. Parker have two kids

An organism has 20 chromosomes after fertilization.after meiosis, how many chromosomes would each sex cell have?

Answers

Answer:

EACH SEX CELL WILL HAVE 10 CHROMOSOMES BECAUSE n+n=2n

means haploid parent cells join or fuse to form diploid zygote

Answer:

10

Explanation:

Can someone help me with this question

Answers

Answer:

hypothesis , hope it helps

Explanation:

Answer:

Inference

Explanation:

Inference is something you predict after testing that's a result after an hypothesis has been made. Hypothesis is an intelligent guess based on some observed phenomena which can be subjected to further testing.

When the play button is pressed, a CD accelerates uniformly from rest to 430 rev/min in 4.0 revolutions. If the CD has a radius of 7.0 cm and a mass of 17 g , what is the torque exerted on it?

Answers

Answer:

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

Explanation:

As CD is acceleration uniformly, the following equation of motion can be used to determine the angular acceleration:

[tex]\dot n^{2} = \dot n_{o}^{2} + 2\cdot \ddot n \cdot \Delta n[/tex]

Where:

[tex]\dot n_{o}[/tex] - Initial angular speed, measured in revolutions per minute.

[tex]\dot n[/tex] - Final angular speed, measured in revolutions per minute.

[tex]\ddot n[/tex] - Angular acceleration, measured in revolution per square minute.

[tex]\Delta n[/tex] - Change in angular position, measured in revolutions.

The angular acceleration is cleared and calculated:

[tex]\ddot n = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \Delta n}[/tex]

Given that [tex]\dot n_{o} = 0\,\frac{rev}{min}[/tex], [tex]\dot n = 430\,\frac{rev}{min}[/tex] and [tex]\Delta n = 4\, rev[/tex], the angular acceleration is:

[tex]\ddot n = \frac{\left(430\,\frac{rev}{min} \right)^{2}-\left(0\,\frac{rev}{min} \right)^{2}}{2\cdot (4\,rev)}[/tex]

[tex]\ddot n = 23112.5\,\frac{rev}{min^{2}}[/tex]

The angular accelaration measured in radians per square second is:

[tex]\alpha = \left(23112.5\,\frac{rev}{min^{2}} \right)\cdot \left(2\pi\,\frac{rad}{rev}\right)\cdot \left(\frac{1}{3600}\,\frac{min^{2}}{s^{2}} \right)[/tex]

[tex]\alpha \approx 40.339\,\frac{rad}{s^{2}}[/tex]

Net torque experimented by the CD during its accleration is equal to the product of its moment of inertia with respect to its axis of rotation and angular acceleration:

[tex]\tau = I \cdot \alpha[/tex]

Where:

[tex]I[/tex] - Moment of inertia, measured in [tex]kg \cdot m^{2}[/tex].

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

In addition, a CD has a form of a uniform disk, whose moment of inertia is:

[tex]I = \frac{1}{2}\cdot m \cdot r^{2}[/tex]

Where:

[tex]m[/tex] - Mass of the CD, measured in kilograms.

[tex]r[/tex] - Radius of the CD, measured in meters.

If [tex]m = 0.017\,kg[/tex] and [tex]r = 0.07\,m[/tex], then:

[tex]I = \frac{1}{2}\cdot (0.017\,kg)\cdot (0.07\,m)^{2}[/tex]

[tex]I = 4.165\times 10^{-5}\,kg\cdot m^{2}[/tex]

Now, the net torque exerted on CD is:

[tex]\tau = (4.165\times 10^{-5}\,kg\cdot m^{2})\cdot \left(40.339\,\frac{rad}{s^{2}} \right)[/tex]

[tex]\tau = 1.680\times 10^{-3}\,N\cdot m[/tex]

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

In Physics lab, a lab team places a cart on one of the horizontal, linear tracks with a fan attached to it. The cart is positioned at one end of the track, and the fan is turned on. Starting from rest, the cart takes 4.34 s to travel a distance of 1.62 m. The mass of the cart plus fan is 354 g. Assume that the cart travels with constant acceleration.
A) What is the net force exerted on the cart-fan combination?B) Mass is added to the cart until the total mass of the cart-fan combination is 762 g, and the experiment is repeated. How long does it take for the cart, starting from rest, to travel 1.62 m now?

Answers

Answer:

A. F = 0.06 N

B. t = 6.37 s

Explanation:

A)

First we need to find the constant acceleration of the cart. For this purpose, we use 2nd equation of motion:

s = (Vi)(t) + (0.5)at²

where,

s = distance traveled = 1.62 m

Vi = 0 m/s   (Since, it starts from rest)

t = Time Taken = 4.34 s

a = acceleration = ?

Therefore,

1.62 m = (0 m/s)(4.34 s) + (0.5)(a)(4.34 s)²

1.62 m/9.4178 s² = a

a = 0.172 m/s²

Now, from Newton's Second law, we know that:

F = ma

where,

F = Net Force of the combination = ?

m = Mass pf combination = 354 g = 0.354 kg

Therefore,

F = (0.354 kg)(0.172 m/s²)

F = 0.06 N

B)

Now, for the same force, but changed mass = 762 g = 0.762 kg, we have the acceleration to be:

F = ma

a = F/m

a = 0.06 N/0.762 kg

a = 0.08 m/s²

Now, using  2nd equation of motion:

s = (Vi)(t) + (0.5)at²

1.62 m = (0 m/s)(t) + (0.5)(0.08 m/s²)t²

t² = 1.62 m/(0.04 m/s²)

t = √40.54 s²

t = 6.37 s

A cheetah bites into its prey. One tooth exerts a force of 320 N. The area of the point of the tooth is 0.5 cm². The pressure of the tooth on the prey, in N/cm², is
a) 0.0013 N/cm²
b) 128 N/cm²
c) 320 N/cm²
d) 640 N/cm²

Answers

Answer:

640N/cm^2

Answer D is correct

Explanation:

[tex]pressure = \frac{force}{area} \\ = \frac{320}{0.5} \\ = 640[/tex]

hope this helps

brainliest appreciated

good luck! have a nice day!

A light wave will *Blank* if it enters a new medium perpendicular to the surface.

Answers

Answer:

A light wave will not stop if it enters a new medium perpendicular to the surface.

Explanation:

A light wave will not have any deviation if it enters a new medium perpendicular to the surface.

What is meant by refraction ?

Refraction is defined as an optical phenomenon by which the direction of a light wave gets changed when it travels from one medium to another. This is because of the change in speed.

Here,

The light wave is entering a new medium such that it enters perpendicular to the surface. Angle of incidence is the angle between the incident ray and the line perpendicular to the surface at the point of incidence. Since, here the light ray is incident normal to the surface that means the angle of incidence is 0.

According to Snell's law,

sin i = μ sin r

where i is the angle of incidence, r is the angle of refraction and μ is the constant called refractive index.

As i = 0, sin i = 0

So, μ sin r = 0

Since μ is a constant, we can say that sin r = 0 or the angle of refraction,

r = 0

This means that there is no refraction and hence the light wave won't get deviated when it enters the medium normally.

Hence,

A light wave will not have any deviation if it enters a new medium perpendicular to the surface.

To learn more about refraction, click:

https://brainly.com/question/14397443

#SPJ3

The index of refraction of Sophia's cornea is 1.387 and that of the aqueous fluid behind the cornea is 1.36. Light is incident from air onto her cornea at an angle of 17.5° from the normal to the surface. At what angle to the normal is the light traveling in the aqueous fluid?

Answers

Answer:

17.85°

Explanation:

To find the angle to the normal in which the light travels in the aqueous fluid you use the Snell's law:

[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]

n1: index of refraction of Sophia's cornea = 1.387

n2: index of refraction of aqueous fluid = 1.36

θ1: angle to normal in the first medium = 17.5°

θ2: angle to normal in the second medium

You solve the equation (1) for θ2, next, you replace the values of the rest of the variables:

[tex]\theta_2=sin^{-1}(\frac{n_1sin\theta_1}{n_2})\\\\\theta_2=sin^{-1}(\frac{(1.387)(sin17.5\°)}{1.36})=17.85\°[/tex]

hence, the angle to normal in the aqueous medium is 17.85°

Two plates with area 7.00×10−3 m27.00×10−3 m2 are separated by a distance of 4.80×10−4 m4.80×10−4 m . If a charge of 5.40×10−8 C5.40×10−8 C is moved from one plate to the other, calculate the potential difference (voltage) between the two plates. Assume that the separation distance is small in comparison to the diameter of the plates.

Answers

Answer:

The voltage is  [tex]V = 418.60 \ Volts[/tex]  

Explanation:

From the question we are told that

    The area of the both plate is  [tex]A = 7.00 *10^{-3} \ m^2[/tex]

    The distance between the plate is [tex]d = 4.80*10^{-4}\ m[/tex]

     The magnitude of the charge is  [tex]q = 5.40 *10^{-8} \ C[/tex]

   

The capacitance of the capacitor that consist of the two plates is mathematically represented as

        [tex]C = \frac{\epsilon _o A}{d}[/tex]

Where [tex]\epsilon_o[/tex] is the permitivity of free space with a value  [tex]e = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

So

       [tex]C = \frac{8.85*10^{-12} * (7* 10^{-3})}{ 4.8*10^{-4}}[/tex]

        [tex]C = 1.29 *10^{-10} \ F[/tex]

The potential difference between the plate is mathematically represented as

      [tex]V = \frac{ Q}{C }[/tex]

     [tex]V = \frac{ 5.4*10^{-8}}{1.29 *10^{-10}}[/tex]

     [tex]V = 418.60 \ Volts[/tex]

   

A uniformly charged ring of radius 10.0 cm has a total charge of 71.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.)
(a) 1.00 cm
What is the general expression for the electric field along the axis of a uniformly charged ring? i MN/C
(b) 5.00 cm
i MN/C
(c) 30.0 cm
i MN/C
(d) 100 cm
i MN/C

Answers

Answer:

General Expression: E = kql/(l² + r²)^(3/2)

(a) 6.3 MN/C

(b) 22.8 MN/C

(c) 6.1 MN/C

(d) 0.63 MN/C

Explanation:

The general expression for electric field along axis of a uniformly charged ring is:

E = kqL/(L² + r²)^(3/2)

where,

E = Electric Field Strength = ?

k = Coulomb's Constant = 9 x 10⁹ N.m²/C²

q = Total Charge = 71 μC = 71 x 10⁻⁶ C

L = Distance from center on axis

r = radius of ring = 10 cm = 0.1 m

(a)

L = 1 cm = 0.01 m

Therefore,

E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.01 m)/[(0.01 m)² + (0.1 m)²]^(3/2)

E = (6390 N.m³/C)/(0.00101 m³)

E =  6.3 x 10⁶ N/C = 6.3 MN/C

(b)

L = 5 cm = 0.05 m

Therefore,

E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.05 m)/[(0.05 m)² + (0.1 m)²]^(3/2)

E = (31950 N.m³/C)/(0.00139 m³)

E =  22.8 x 10⁶ N/C = 27.4 MN/C

(c)

L = 30 cm = 0.3 m

Therefore,

E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.3 m)/[(0.3 m)² + (0.1 m)²]^(3/2)

E = (191700 N.m³/C)/(0.03162 m³)

E =  6.1 x 10⁶ N/C = 6.1 MN/C

(d)

L = 100 cm = 1 m

Therefore,

E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(1 m)/[(1 m)² + (0.1 m)²]^(3/2)

E = (639000 N.m³/C)/(1.015 m³)

E =  0.63 x 10⁶ N/C = 0.63 MN/C

Complete the first and second sentences, choosing the correct answer from the given ones.
1. A temperature of 100 K corresponds on a Celsius scale to 100 ° C / 0 ° C / 173 ° C / -173 ° C.
2. At 50 ° C, it corresponds to a Kelvin scale of 150 K / 323 K / 273 K / 223 K.

Answers

Explanation:

Complete the first and second sentences, choosing the correct answer from the given ones.

1. T = 100 K

[tex]^{\circ}C=K-273[/tex]

Put T = 100 K

[tex]T=100-273=-173^{\circ} C[/tex]

A temperature of 100 K corresponds on a Celsius scale to (-173 °C)

2. T = 50 °C

[tex]K=^{\circ}C+273\\\\K=50+273\\\\T=323\ K[/tex]

So, At 50 °C, it corresponds to a Kelvin scale of 323 K.

Other Questions
Please help! Correct answer only!For a fundraiser, there is a raffle with 100 tickets. One ticket will win a $150 prize, and the rest will win nothing. If you have a ticket, what is the expected payoff?$ ___ Which ordered pair is a solution to the system?x>4y2A. (0, 0)B. (2, 7)C. (5, 6)D. (4, 1) A 10-mm-diameter Brinell hardness indenter produced an indentation 1.55 mm in diameter in a steel alloy when a load of 500 kg was used. Calculate the Brinell hardness (in HB) of this material. Enter your answer in accordance to the question statement HB -5/6+2/6=What is the answer to this? Please answer my question if you answer it I will surely mark you as the brainliest and if you answer it you will get 30 points and if you answer it I will rate you The colonists and the British fought asa team during the French and IndianWar against whom?A. FrenchB. Other British colonistsC. No one, they fought each otherD. Spanish What is the rate of a reaction if the value of kis 0.1, [A] is 1 M, and [B] is 2 M?Rate = K[A]2[B]2A. 1.6 (mol/L)/sB. 0.8 (mol/L)/SC. 0.2 (mol/L)/SD. 0.4 (mol/L)/S What does social justice mean to you in education? Can someone help me please. Identify the characterization technique used in the following statements and then write a sentence using the opposite kind of characterization. The first has been done for you.1.She wore a ten carat diamond necklace everywhere she went.Indirect characterization. Direct:She was rich.2.Joe was having fun at the party._______________________________________________________________________________________________________________________________________3.All Sally does when people are around is say weird things that nobody understands._______________________________________________________________________________________________________________________________________ Which of these sentences should be removed from the passage? Sentence 9Sentence 6Sentence 4Sentence 11FIRST GETS MARKED BRAINLIEST! Use the distributive property to write the following expression without parentheses.-6(3-m+n) Which of these words describe Hannah Senesh? Select all that apply.martyrZionistanti-SemitepoetSUBMIT ANSWER* ASK FOR HELP Calculate the wavelength of an electron mass 9.1*10^-31kg moving with a velocity of 2.0*10^6m/s (h=6.63*10^-34Js) (Hint: De Broglie's wavelength) Plz help. Dora calculated the mean absolute deviation for the data set 35, 16, 23, 42, and 19. Her work is shown below. Step 1: Find the mean. mean = StartFraction 35 + 16 + 23 + 42 + 19 Over 5 EndFraction = 27 Step 2: Find each absolute deviation. 8, 11, 4, 15, 8 Step 3: Find the mean absolute deviation. M A D = StartFraction 8 + 11 + 4 + 15 Over 5 EndFraction = 9.5 What is Doras error? A. Dora should have divided by 4 when finding the meanB. Dora found the absolute deviation of 35 incorrectlyC. Dora used only four numbers in finding the meanD. Dora used only four numbers in finding the mean absolute deviation the length of a ruler is 170cm,if the ruler broke into four equal parts.what will be the sum of the length of three parts Maya wrote a program and forgot to put the steps in the correct order. Which step does Maya need to review? Pattern following Planning Segmenting Sequencing please help me with this According to the ideal gas law, what happens to the volume of a gas when thetemperature doubles (all else held constant)?A. The volume stays constant.B. The volume doubles.OOOC. It cannot be determinedD. The volume is halved Journalize the following five transactions for Nexium & Associates, Inc. Omit explanations.March 1 - Bills are sent to clients for services provided in February in the amount of $800.March 9 - Corner Office, Inc. delivers office furniture ($1,060) and office supplies ($160) to Nexium leaving an invoice for $1,220.March 15 - Payment is made to Corner Office, Inc. for the furniture and office supplies delivered on March 9.March 23 - A bill for $430 for electricity for the month of March is received and will be paid on its due date in April.March 31 Salaries of $850 are paid to employees.For a compound transaction, if an amount box does not require an entry, leave it blank or enter "0".