What happens to a light wave that is absorbed by matter

Answers

Answer 1

Answer:

In absorption, the frequency of the incoming light wave is at or near the energy levels of the electrons in the matter. The electrons will absorb the energy of the light wave and change their energy state.

Explanation:


Related Questions

g A thin-walled hollow cylinder and a solid cylinder, both have same mass 2.0 kg and radius 20 cm, start rolling down from rest at the top of an incline plane. The height of top of the incline plane is 1.2 m. Find translational speed of each cylinder upon reaching the bottom and determine which cylinder has the greatest translational speed upon reaching the bottom. Moment of inertia of hollow cylinder about its axis passing through the center is mr2 and for solid cylinder mr2/2

Answers

Answer:

a. i. 3.43 m/s ii. 2.8 m/s

b. The thin-walled cylinder

Explanation:

a. Find translational speed of each cylinder upon reaching the bottom

The potential energy change of each mass = total kinetic energy gain = translational kinetic energy + rotational kinetic energy

So, mgh = 1/2mv² + 1/2Iω² where m = mass of object = 2.0 kg, g =acceleration due to gravity = 9.8 m/s², h = height of incline = 1.2 m, v = translational velocity of object, I = moment of inertia of object and ω = angular speed = v/r where r = radius of object.

i. translational speed of thin-walled cylinder upon reaching the bottom

So, For the thin-walled cylinder, I = mr², we find its translational velocity, v

So, mgh = 1/2mv² + 1/2Iω²

mgh = 1/2mv² + 1/2(mr²)(v/r)²  

mgh = 1/2mv² + 1/2mv²

mgh = mv²

v² = gh

v = √gh

v = √(9.8 m/s² × 1.2 m)

v = √(11.76 m²/s²)

v = 3.43 m/s

ii. translational speed of solid cylinder upon reaching the bottom

So, For the solid cylinder, I = mr²/2, we find its translational velocity, v'

So, mgh = 1/2mv'² + 1/2Iω²

mgh = 1/2mv² + 1/2(mr²/2)(v'/r)²  

mgh = 1/2mv'² + mv'²

mgh = 3mv'²/2

v'² = 2gh/3

v' = √(2gh/3)

v' = √(2 × 9.8 m/s² × 1.2 m/3)

v' = √(23.52 m²/s²/3)

v' = √(7.84 m²/s²)

v' = 2.8 m/s

b. Determine which cylinder has the greatest translational speed upon reaching the bottom.

Since v = 3.43 m/s > v'= 2.8 m/s,

the thin-walled cylinder has the greatest translational speed upon reaching the bottom.

lus
A cup has a mass of 0.0650 kg and a
volume of 0.000250 m3, and is floating
in fresh water. Pennies are put into the
cup until the top of the cup is level with
the water line. What is the mass of the
pennies in the cup?
[?] kg
Pwater = 1,000 kg/m3

Answers

Answer:

hey but the person at the top is right

Answer:

0.185

Explanation:

Volume of water displaced = 0.000250 ( volume of cup )

Mass of water displaced by cup = density of water X volume of water displaced

= 1000 X 0.000250 = 0.250 kg

Mass of water displaced = mass of cup + mass of pennies ( law of flotation)

0.25 = 0.0650 + mass of pennies

Mass of pennies = 0.2500 - 0.0650

= 0.185 kg

Don’t hesitate to like and rate this answer. It would mean a lot for me.

Which device converts electric energy into mechanical energy?
O A. An electromagnet
O B. A motor
O C. A transformer
O D. A generator

Answers

Answer:

B motor

Explanation:

A solenoid that is 93.9 cm long has a cross-sectional area of 17.3 cm2. There are 1270 turns of wire carrying a current of 7.80 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).

Answers

Answer:

[tex]65.6\ \text{J/m}^3[/tex]

[tex]0.11\ \text{J}[/tex]

Explanation:

B = Magnetic field = [tex]\mu_0 \dfrac{N}{l}I[/tex]

[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi10^{-7}\ \text{H/m}[/tex]

N = Number of turns = 1270

[tex]l[/tex] = Length of solenoid = 93.9 cm = 0.939 m

[tex]I[/tex] = Current = 7.8 A

A = Area of solenoid = [tex]17.3\ \text{cm}^2[/tex]

Energy density of a solenoid is given by

[tex]u_m=\dfrac{B^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{(\mu_0 \dfrac{N}{l}I)^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{\mu_0N^2I^2}{2l^2}\\\Rightarrow u_m=\dfrac{4\pi\times 10^{-7}\times 1230^2\times 7.8^2}{2\times 0.939^2}\\\Rightarrow u_m=65.6\ \text{J/m}^3[/tex]

The energy density of the magnetic field inside the solenoid is [tex]65.6\ \text{J/m}^3[/tex]

Energy is given by

[tex]U_m=u_mAl\\\Rightarrow U_m=65.6\times 17.3\times 10^{-4}\times 0.939\\\Rightarrow U_m=0.11\ \text{J}[/tex]

The total energy in joules stored in the magnetic field is [tex]0.11\ \text{J}[/tex].

Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit

Answers

Answer:

0.03 A

Explanation:

From the question given above, the following data were obtained:

Voltage (V) = 12 V

Resistor (R) = 470 Ω

Current (I) =?

From ohm's law, the voltage, current and resistor are related by the following formula:

Voltage = current × resistor

V = IR

With the above formula, we can obtain the current in the circuit as follow:

Voltage (V) = 12 V

Resistor (R) = 470 Ω

Current (I) =?

V = IR

12 = I × 470

Divide both side by 470

I = 12 / 470

I = 0.03 A

Thus, the current in the circuit is 0.03 A

Answer:

0.03 A

Explanation:

Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit

0.03 A

A 2.0-kg cart is rolling along a frictionless, horizontal track towards a 1.8-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is 5.9 m/s, and the second cart's velocity is -2.7 m/s. (a) What is the total momentum of the system of the two carts at this instant

Answers

Answer:

the total momentum of the system before collision is 6.94 kgm/s

Explanation:

Given;

mass of the first cart, m₁ = 2.0 kg

mass of the second cart, m₂ = 1.8 kg

velocity of the first cart before collision, u₁ = 5.9 m/s

velocity of the second cart before collision, u₂ = -2.7 m/s

The total momentum of the system before collision is calculated as follows;

[tex]P_t = P_1 + P_2 \\\\P_t = m_1u_1 + m_2u_2\\\\P_t = (2\times 5.9) + (1.8 \times -2.7)\\\\P_t = 11.8 - 4.86\\\\P_t = 6.94 \ kgm/s[/tex]

Therefore, the total momentum of the system before collision is 6.94 kgm/s

Select the correct answer Which object is an insulator

A. iron
b. cooper
c. plastic
d. salt water​

Answers

c. plastic. plastic is an insulator!
C is the answer to the question

6. The rate at which velocity changes is called
O speed
O direction
O acceleration
O displacement

Answers

acceleration i believe is the answer

A ball weighs 5.7 N on Earth. What is its mass?

Answers

Answer:

55.897905

Explanation:

1 Newton in Earth gravity is the equivalent weight of 1/9.80665 kg on Earth

9.80665 times 5.7=55.897905

Brainliest?

Credit-Card Magnetic Strips Experiments carried out on the television show Mythbusters determined that a magnetic field of 1000 gauss is needed to corrupt the information on a credit card's magnetic strip. (They also busted the myth that a credit card can be demagnetized by an electric eel or an eelskin wallet.) Suppose a long, straight wire carries a current of 7.0A . How close can a credit card be held to this wire without damaging its magnetic strip?

Answers

Answer:

14 μm

Explanation:

The magnetic field due to a long straight wire is B = μ₀i/2πr where  μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, i = current = 7.0 A and r = distance of credit card from magnetic field.

So r = μ₀i/2πB since B = 1000 gauss = 1000 G × 1 T/10000 G  = 0.1 T

r = 4π × 10⁻⁷ H/m × 7.0 A/(2π × 0.1 T)

r = 2 × 10⁻⁷ H/m × 7.0 A/0.1 T

r = 14 × 10⁻⁷ H/m × A/0.1 T

r = 140 × 10⁻⁷ m

r = 1.4 × 10⁻⁵ m

r = 14 × 10⁻⁶ m

r = 14 μm

What is the order of the events for the water cycle on a typical warm day?
А
rain, snow, sleet
B
precipitation, evaporation, rain
с
evaporation, condensation, precipitation
D
condensation, evaporation, precipitation

Answers

B precipitation,condensation,precipitation

Fairly easy question I’ll give extra points help.

Answers

1. third law

2. first law

3. third law

4. second law

yup yup ! answer is above !!!

An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? Suppose that the quarterback takes 0.30 to return to the ground after throwing the ball. How far d will he move horizontally, assuming his speed is constant?

Answers

Answer:

a)

the quarterback will be moving back at speed of 0.080625 m/s

b)

the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm

Explanation:

Given the data in the question;

a)

How fast will he be moving backward just after releasing the ball?

using conservation of momentum;

m₁v₁ = m₂v₂

v₂ = m₁v₁ / m₂

where m₁ is initial mass ( 0.43 kg )

m₂ is the final mass ( 80 kg )

v₁ is the initial velocity  ( 15 m/s )

v₂ is the final velocity

so we substitute

v₂ = ( 0.43 × 15 ) / 80

v₂ = 6.45 / 80

v₂ = 0.080625 m/s

Therefore, the quarterback will be moving back at speed of 0.080625 m/s

b) Suppose that the quarterback takes 0.30 to return to the ground after throwing the ball. How far d will he move horizontally, assuming his speed is constant?

we make use of the relation between time, distance and speed;

s = d/t

d = st

where s is the speed ( 0.080625 m/s )

t is time ( 0.30 s )

so we substitute

d = 0.080625 × 0.30

d = 0.0241875 m or 2.41875 cm

Therefore, the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm

Predicted height and total energy

Answers

Answer:

The predicted height is 2.809 meters, writing this in centimeters we get (1m = 100cm):

h = 2.809 m = (2.809)*(100cm) = 280.9 cm

And the total energy is:

E = 6.696 J

Explanation:

First let's see the problem.

We have an object of mass m = 274g which is thrown upwards with an initial velocity v0 = 6.991 m/s, in a place with a gravitational acceleration of g = 8.7 m/s^2

When the object is on the air, the only force acting on it will be the gravitational force, then the acceleration of the object will be equal to the gravitational acceleration, then we can write:

a(t) = -8.7 m/s^2

Where the negative sign is because this acceleration points down.

Now to get the velocity of the object we can integrate over time to get:

v(t) = (-8.7 m/s^2)*t + v0

Where v0 is a constant of integration, which is the initial velocity, then we can write this as:

v(t) = (-8.7 m/s^2)*t + 6.991 m/s

Now we can integrate again over the time to get the position equation.

p(t) = (1/2)*(-8.7 m/s^2)*t^2 + (6.991 m/s)*t + p0

Where p0 is the initial position, because the ball is being thrown from the ground, the initial position is 0.

Then the position equation is:

p(t) = (1/2)*(-8.7 m/s^2)*t^2 + (6.991 m/s)*t

Ok, now we know all the movement equations for the object.

The first thing we want to know is the maximum height of the object.

We know that the object reaches its maximum height when the velocity is zero (this is, the velocity stops being positive, meaning that the object stops going up, then in that time we have the maximum height)

We need to solve:

v(t) = 0m/s = (-8.7 m/s^2)*t + 6.991 m/s

(8.7 m/s^2)*t =  6.991 m/s

t =  6.991 m/s/( (8.7 m/s^2)  = 0.804 seconds

The maximum height of the object is given by:

p(0.804s) = (1/2)*(-8.7 m/s^2)*(0.804)^2 + (6.991 m/s)*(0.804) = 2.809 m

The maximum height of the object is 2.809 meters.

Now let's find the maximum energy.

Remember that the energy of an object can be written as the sum of the potential energy U and the kinetic energy K.

E = K + U

Such that for an object of mass m and velocity v, the kinetic energy is:

K = (1/2)*m*v^2

And for an object of mass m, at a height h from the ground and with gravitational acceleration g, the potential energy is:

U = m*g*h

Now, when the object is at its maximum height, the velocity is zero.

Then K = 0

And for conservation of energy, the total energy of the object becomes potential energy.

E = 0 + U

E = U

So if we find the potential energy at the maximum height of the object's path, we can find the total energy of the object.

We know that:

mass = m = 274g = 0.274 kg  (here i used that 1kg = 1000g)

height = h = 2.809 meters.

gravitational acceleration = g = 8.7 m/s^2

Then the potential energy at this point is:

U =  0.274 kg*(2.809 meters)*(8.7 m/s^2) = 6.696 J

This means that the total energy of the object is:

E = 6.696 J

An object was thrown from rest upward with an initial velocity of 10m/s with time frame of 6s find the distance of the object from it's resting point​

Answers

Answer:

60

Explanation:

Work Done= Force×Displacement in the direction of the force

W.D. = 10×6

W.D. = 10×0.6

W.D. = 6m

Force of a Baseball Swing. A baseball has mass 0.153 kg . Part A If the velocity of a pitched ball has a magnitude of 44.5 m/s and the batted ball's velocity is 50.5 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat. Express your answer to three significant figures and include the appropriate units. P

Answers

Answer: 14.5 kg.m/s

Explanation:

Given

mass of baseball is [tex]m=0.153\ kg[/tex]

The initial speed of the ball is [tex]u=-44.5\ m/s[/tex]

the final speed of the ball is [tex]v=50.5\ m/s[/tex]

Impulse is given as a change in the momentum

[tex]\vec{J}=\Delta \vec{P}[/tex]

[tex]J=m(v-u)\\J=0.153(50.5-(44.5))\\J=0.153\times 95=14.535\ kg.m/s[/tex]

Change in momentum up to 3 significant figures is 14.5 kg.m/s

Impulse applied by a bat is also the same as the change in momentum

A mom pushes her 19.3 kg daughter on the swing. If she gives her an initial velocity of 7.5 m/s at the bottom of the swing and the swing sits 0.6 m above the ground at it's lowest point, what height does she reach above the ground?

Answers

Answer:

3.17333333333? I hope I get it right

Explanation:

..................hello

Which of the following could be an example of chemical weathering?

a. rocks tumbling against each other

​b. water seeping into the ground, dissolving the limestone to form a cave​

c. a waterfall boring out a whole in a rock under it

Answers

Answer: B

Explanation:

Answers A and C are examples of physical weathering while B is chemical weathering when water and lime mix it creates a reaction

At which point is there the most potential energy? At which point is there the most kinetic energy?

A. Potential energy A; Kinetic energy B
B. Potential energy B; Kinetic energy D
C. Potential energy A; Kinetic energy D
D. Potential energy C; Kinetic energy D

Answers

Answer:

The cart mark (a) has the most potential energy and the cart marked (b) has the most kinetic energy

We have seen that the voltage of a concentration cell can be affected by the concentrations of aqueous components and/or temperature. The identity of the redox pair also affects the observed voltage of a concentration cell in a somewhat subtle way. Carefully consider the Nernst equation. Rank the redox pairs below from greatest (1) to smallest (3) voltage in a concentration cell, assuming equal values of T and Q for all cells. Assume multimeter leads are connected to that measured voltages are positive.

a. Copper metal/copper(l) ion
b. Aluminum/aluminum ion
c. Magnesium metal/magnesium ion

Answers

Answer:

1) Magnesium metal/magnesium ion

2) Aluminum/aluminum ion

3)  Copper metal/copper(l) ion

Explanation:

The activity series is a series that shows the ease of reactivity of substances in an electrochemical cell.

The substances that are higher up in the series are more reactive in electrochemical cells.

Magnesium is the first element in the series that has the most negative redox potential  then followed aluminium.

Hence, according to Nernst,

1) Magnesium metal/magnesium ion

2) Aluminum/aluminum ion

3)  Copper metal/copper(l) ion

A man walks 30 m to the west, then 5 m to the east in 45 seconds.
What is his average speed?

Answers

The displacement is the distance from the beginning point to the ending point. The time was just to throw you off. If he walks 30m due west, and then 5m due east, his displacement would be 30-5=25m to the west.

Help me with this review question please.

Answers

Answer:

K E=( mv²)/2

=(60×3.5²)/2

=367.5J

a Ferris wheel with a diameter of 35 m starts from rest and achieves its maximum operational tangential speed of 2.3 m/s in a time of 15 s. what is the magnitude of the wheels angular acceleration?
b. what is the magnitude of the tangential acceleration after the maximum operational speed is reached?​

Answers

First calculate the radius 35/2=17.5m

If each Coulomb of charge is given 20 Joules of energy, what is the voltage of the battery?
A. 20 V
B. 5 V
C. 10 V
D. Not enough info

Answers

Answer:

Explanation:

V = J/C

V = 20/1

= 20 v

Option A is the correct answer

The moon does not stay at the same distance from the earth.why?​

Answers

Answer:

The moon does not stay at the same distance of the earth because the ortbit of the moon is slightly elliptical. If earth is not tilted at an angle of 66.5°, there will be no change in the season and the earth will have equal length of days and night.

Explanation:

mark me brainlest

A student using a stopwatch finds that the time for 10 complete orbits of a ball on the end of a string is 25 seconds. The period of the orbiting ball is​

Answers

Answer:

T = 2.5 s

Explanation:

Given that,

Number of complete orbits = 10

Time, t = 25 seconds

We need to find the period of the orbiting ball. Let it is T. We know that number of oscillations per unit time is called frequency and the reciprocal of frequency is called period of the ball.

So,

[tex]T=\dfrac{t}{n}\\\\T=\dfrac{25}{10}\\\\T=2.5\ s[/tex]

So, the period of the orbiting ball is equal to 2.5 seconds.

Pls help ASAP
Imagine that Maritans launch a rocket toward the Earth at a great speed. While the
rocket is traveling toward us, it will appear
than it actually is.
O more blue
darker
larger
more red

Answers

Answer:

The rocket will appear larger than it actually is

A wire carries a current of 4.2 A at what distance from the wire does the magnetic field have a magnitude of 1.3×10^ -5 t

Answers

Answer:

the distance is 6.46 cm.

Explanation:

Given

current in the wire, I = 4.2 A

magnitude of the magnetic field, B = 1.3 x 10⁻⁵ T

The distance from the wire is determined by using Biot-Savart Law;

[tex]B = \frac{\mu_o I}{2\pi r} \\\\r = \frac{\mu_o I}{2\pi B}[/tex]

Where;

r is the distance from the wire where the magnetic field is experienced

[tex]r = \frac{\mu_o I}{2\pi B}\\\\r = \frac{4\pi \times 10^{-7} \times 4.2 }{2\pi \times 1.3 \times 10^{-5}}\\\\r = 0.0646 \ m\\\\r = 6.46 \ cm[/tex]

Therefore, the distance is 6.46 cm.

Question 7 of 11
>
A 1655 kg car drives down the highway. If the car has a momentum of 61250 kg. m/s, what is the velocity of the car?

Answers

Answer:

velocity = 37.01 m/s

Explanation:

momentum = mass * velocity

61250 = 1655 * x

x = 61250 / 1655

x = 37.0090634441

Find the wavelength of light which is capable of ionizing a hydrogen atom?

Answers

Answer:

The correct answer is -  91.4 nm

Explanation:

According to Bohr's model, the minimum wavelength to ionize Hydrogen atom from n= 1 state is expressed as:

(h×c)/λ=13.6eV

here,

h - Planck constant

c - the speed of light

λ - wavelength

Placing the value in the formula for the wavelength

(6.626×10^−34J.s × 3×10^8 m/s)/λ  =  13.6 ×1.6 × 10^−19 J

λ≈91.4nm

Thus, the correct answer would be = 91.4 nm

Other Questions
You have an annual salary of $47,334. Your monthly expenses include a $1,115 mortgage payment, a $336 car lease payment, $112 in minimum credit card payments, and a $108 payment on your student loan. Calculate your DTI (debt-to-income) ratio as a PERCENTAGE (no % symbol needed). What was one method Adolf Hitler used to maintain power and authority in Germany?AHe adopted an isolationist foreign policy.BHe banned political opposition parties.CHe improved citizen participation in government.DHe forced peasants to work on collectivized farms. which angle pair represents corresponding angles?options on picture A wedge with a mechanical advantage of 0.78 is used to raise a house corner from its foundation. If the output force is 7500 N, what is the input force? IM GIVING BRAINLIEST!!PLEASE HELP!! PLEASE HELP ME I NEED HELP FAST Hurry!!! Need An Answer ASAP Approved cut resistant safety gloves...Select as many answers from the list below that complete this statement accurately-Are usually uncomfortable and can be used if you choose-Should be worn on the non cutting hand-MUST be worn whenever you are using a knife-Should be worn on both hands when cutting-Come in several sizes for comfort and usefulness-Are the BEST way to avoid cuts to your hands The speed of a garden snail is about 8.5106 miles per second. If a garden snail moves at this speed in a straight line for 2103 seconds, how far would the snail travel in standard notation and scientific notation. The diagram below shows the first four steps of meiosis.what's is happening in step labeled c? How to write the equation for The quotient of x and three increased by 12 is 20. What is x? The kinetic energy and the potential energy of the cannonball is constantly ________ as it travels through the air. A. Changing B. Increasing C. Constant D. Decreasing A company is designing a new cylindrical water bottle the volume of the bottle by 204 cm the height of the water bottles 8.9 cm3 what is the radius of a water bottle use 3.14 for pie Can someone help please You eat 11 grams of cereal each day. If you eat the same amount of cereal each day, how many grams of cereal will you eat in 5 days? evaluate each of the following 205 x 195 How many days in April The book of Psalms was written over a: 500-year period 2,000-year period 50-year period 1,000-year period An amusement park thrill ride swings its riders back and forth on a pendulum that spins. Suppose the swing arm of the ride is 62 feet in length, and the axis from which the arm swings is about 64 feet above the ground. What is the height of the riders above the ground at the peak of the arc? Round to the nearest foot if necessarPLEASE HELP Pls someone help me with this question pls Please help meeeeeeeeeee