A line of best fit expresses the relationship between the points.
Explanation:
It does not go through all the points but goes through most of them and it is like a hardrawn curve
What is the frequency if 140 waves pass in 2 minutes?
Answer:
1.16 Hz
Explanation:
frequency, basically, is the number of wave on 1 second
so, in math we write like this
f = n/t
n = number of waves
t = time to do that (in sec)
f = 140/120 = 7/6 Hz
f = 1.16 Hz
Which symbol in a chemical equation separates the reactants from the products?
Answer:
the arrow symbol ⇒ in irreversible reactions and doble arrow symbol in reversible reactios⇔
Explanation:
i hope this will help you
In a Venn diagram, the separate circles contain characteristics unique to each compared and the intersection contains characteristics that are common to both items being compared. This Venn diagram compares the inner and outer planets. What belongs in the center section?
a. -Revolve around the Sun
-Rotate on an axis
-Generally have rings
b. -Revolve around the Sun
-Rotate on axis
-Generally have moons
c. -Rotate around the Sun
-Revolve on an axis
-Generally have moons
d. -Rotate around the Sun
-Revolve on an axis
-Generally have rings
Answer:
B. revolve around the sun
rotate on an axis
generally have moons
Explanation:
edge 2021
Two identical charges,2.0m apart,exert forces of magnitude 4.0 N on each other.What is the value of either charge?
Answer:
[tex]\large \boxed{42\, \mu \text{C}}$[/tex]
Explanation:
The formula for the force exerted between two charges is
[tex]F=k \dfrac{ q_1q_2}{r^2}[/tex]
where k is the Coulomb constant.
The charges are identical, so we can write the formula as
[tex]F=k\dfrac{q^{2}}{r^2}[/tex]
[tex]\begin{array}{rcl}\text{4.0 N}& = & 8.988 \times 10^{9}\text{ N$\cdot$m$^{2}$C$^{-2}$} \times \dfrac{q^{2}}{\text{(2.0 m)}^{2}}\\\\4.0 & = & 2.25 \times 10^{9}\text{ C$^{-2}$} \times q^{2}\\\\q^{2} & = & \dfrac{4.0}{2.25 \times 10^{9}\text{ C$^{-2}$}}\\\\& = & 1.78 \times 10^{-9} \text{ C}^{2}\\q & = & 4.2 \times 10^{-5} \text{ C}\\& = & 42\, \mu \text{C}\\\end{array}\\\text{Each charge has a value of $\large \boxed{\mathbf{42\, \mu }\textbf{C}}$}[/tex]
A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic field that produces on it an upward force exactly equal in magnitude to the wire's weight, causing the wire to "levitate."
Required:
a. What is the field's magnitude?
b. What is the field's direction?
Answer:
The classification of that same issue in question is characterized below.
Explanation:
The given values are:
Current, I = 50.0 A
Diameter, d = 0.10 cm
(a)...
As we know,
⇒ Magnetic force = Copper wire's weight
So,
⇒ [tex]B\times I\times L=M\times g[/tex]
On putting the estimated values, we get
⇒ [tex]B\times 50\times 1=7.037\times 10^{-3}\times 9.81[/tex]
⇒ [tex]50B=69.03297\times 10^{-3}[/tex]
⇒ [tex]B=1.38\times 10^{-3} \ T[/tex]
(b)...
As we know,
⇒ [tex]m=\delta\times L\times \frac{\pi \ d^2}{4}[/tex]
⇒ [tex]=8960\times 1\times \frac{\pi \ (0.001)^2}{4}[/tex]
⇒ [tex]=2240\times \pi \ 0.000001[/tex]
⇒ [tex]=7.037\times 10^{-3} \ kg[/tex]
You drive in straight line at 20 m/s for 10 miles, then at 30m/s for an other 10 miles what is your average speed
Answer:
25 m/s
Explanation:
Data provided in the question
20 m/s for 10 minutes
And, the 30 m/s for another 10 minutes
Based on the above information, the average speed is
As we know that
[tex]Average\ speed = \frac{Total\ distance}{Total\ time}[/tex]
[tex]= \frac{20\times10\times60 + 30\times10\times60 }{20\times60}[/tex]
= 25 m/s
1 hour = 60 minutes
1 minute = 60 seconds
Hence, the average speed is 25 m/s
In the question, there are miles is given but instead of this we use the minutes as we have to find out the average speed and time should not be in miles it should be in minutes, hour or seconds
Therefore we considered the same
how does the statement " silence is golden " relate to ethics in communicating at the workplace.?
Answer:
Being silent most of the time is a good virtue under certain circumstances and environment. It is always advisable to remain quite silent and not be too quick to respond to situations or issues so as to avoid making and saying wrong words.
The ethics in a workplace involves communicating with others with less amount of talking as possible and more of body languages and signs. This is because the workplace is meant to be a serene place.
A projectile is launched on the Earth with a certain initial velocity and moves without air resistance. Another projectile is launched with the same initial velocity on the Moon, where the acceleration due to gravity is one-sixth as large. How does the maximum altitude of the projectile on the Moon compare with that of the projectile on the Earth?
With smaller gravitational forces and therefor less vertical acceleration, the projectile launched on the moon ... with the same initial speed and direction ...
-- climbs faster,
-- spends more time climbing,
-- reaches a higher peak,
-- falls slower,
-- spends more time falling, and
-- covers more horizontal distance
than the projectile launched on the Earth.
This is not because of air resistance. It would be true even if there were no air resistance on the Earth. It's entirely a gravity thing.
A rocket blasts off vertically from rest on the launch pad with an upward acceleration of 2.90 m/s2 . At 20.0s after blastoff, the engines suddenly fail, which means that the force they produce instantly stops.
(A) How high above the launch pad will the rocket eventually go?
(B) Find the rocket's velocity at its highest point.
(C) Find the magnitude of the rocket's acceleration at its highest point.
(D) Find the direction of the rocket's acceleration at its highest point.
(E) How long after it was launched will the rocket fall back to the launch pad?
(F) How fast will it be moving when it does so?
Answer:
A) 580m
B) 0 m/s
C) 9.8m/s^2
D) downward
E) 10.87s
F) 106.62 m/s
Explanation:
A) The distance traveled by the rocket is calculated by using the following expression:
[tex]y=\frac{1}{2}at^2[/tex]
a: acceleration of the rocket = 2.90 m/s^2
t: time of the flight = 20.0 s
[tex]y=\frac{1}{2}(2.90\frac{m}{s^2})(20.0s)^2=580m[/tex]
B) In the highest point the rocket has a velocity with magnitude zero v = 0m/s because there the rocket stops.
C) The engines of the rocket suddenly fails in the highest point. There, the acceleration of the rocket is due to the gravitational force, that is 9.8 m/s^2
D) The acceleration points downward
E) The time the rocket takes to return to the ground is given by:
[tex]t=\sqrt{\frac{2y}{g}}=\sqrt{\frac{2(580m)}{9.8m/s^2}}=10.87s[/tex]
10.87 seconds
F) The velocity just before the rocket arrives to the ground is:
[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s ^2)(580m)}=106.62\frac{m}{s}[/tex]
What is the momentum of an 8kg bowling ball rolling at 2m/s
Answer:
16kg m/s
Explanation:
P=mv
8 times 2=16kg m/s
Answer:
The momentum of moving body is calculated by
p= mv
In this question m= 8kg
v= 2m/s
so p = 8*2 = 16 kg m/s.
"Mass in motion" can be used to describe momentum. Mass exists in all things. Therefore, if an object is moving, it has momentum—its mass is moving. There are two factors that determine an object's momentum level: how much and how quickly the objects are moving.
Mass and velocity are two variables that affect momentum. An object's momentum can be expressed mathematically as the product of its mass multiply by its velocity.
The equation above can be rewritten as p = m • v, where m is the mass and v is the velocity, since momentum is represented by the lower case p in physics. The equation demonstrates that an object's momentum is directly proportional to its mass and velocity.
The quantity momentum is a vector. A vector quantity is a quantity that is fully described by magnitude and direction, as was discussed in a previous unit. Information about the bowling ball's magnitude as well as its direction must be included in order to fully describe the momentum of a 5-kg ball traveling westward at 2 m/s. The ball has a momentum of 10 kg m/s.
Until information about the ball's direction is provided, the ball's momentum cannot be fully described. The direction of the ball's velocity and the direction of the momentum vector are identical. It was mentioned in a previous unit that the velocity vector moves in the same way that an object moves. The bowling ball's momentum can be fully described as 10 kg m/s westward if it is moving westward. The magnitude and direction of an object's momentum can be used to fully describe it as a vector quantity.
For more details about momentum check these:
brainly.com/question/12098941
#SPJ2
Someone please helppppppp!!!!!
A scuba diver and her gear displace a volume of 68.5 L and have a total mass of 71.8 kg . Part A What is the buoyant force on the diver in sea water? FB = nothing N Request Answer Part B Will the diver sink or float?
Answer:
A) Fb = 671.3 N
B) The diver will sink.
Explanation:
A)
The buoyant force applied on an object by a fluid is given by the following formula:
Fb = Vρg
where,
Fb = Buoyant Force = ?
V = Volume of the water displaced by the object = 68.5 L = 0.0685 m³
ρ = Density of Water = 1000 kg/m³
g = 9.8 m/s²
Therefore,
Fb = (0.0685 m³)(1000 kg/m³)(9.8 m/s²)
Fb = 671.3 N
B)
Now, in order to find out whether the diver sinks or float, we need to find weight of the diver with gear.
W = mg = (71.8 kg)(9.8 m/s²)
W = 703.64 N
Since, W > Fb. Therefore, the downward force of weight will make the diver sink.
The diver will sink.
16)
Gamma
rays
X-rays
UV
Infrared
Micro-
waves
Radio
waves
Visible light
Light is an electromagnetic wave and it has a place on the electromagnetic spectrum based on it energy and
wavelength. How does light's energy compare to the energy of other forms of electromagnetic waves?
A)
Light is less energetic than X-rays.
B)
Light is more energetic than X-rays.
Light is the least energetic electromagnetic wave.
D)
Light is the most energetic electromagnetic wave.
Answer:
Light is less energetic than X-rays.
Explanation:
The electromagnetic spectrum refers to the range of wavelengths or frequencies over which electromagnetic radiation extends. It is the entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and including visible light. In the electromagnetic spectrum, the entire distribution of electromagnetic radiation is done according to their frequency or wavelength.
The energy of an electromagnetic wave depends on its frequency and wavelength. The shorter the wavelength, the greater the energy of the electromagnetic wave but the larger frequency, the greater the energy of the electromagnetic wave.
X-rays has a frequency of about 1×10^20 Hz compared to visible light of frequency of about 1×10^15 Hz. Hence X-rays, having a larger frequency, is more energetic than visible light.
What is the resistance of a circuit with a voltage of 10 V in a current of 5 A use almond law to create the resistance
Answer:
2Ω
Explanation:
Ohm's law:
V = IR
10 V = (5 A) R
R = 2 Ω
Use the position function s(t) = -16t + v_0t + s_0 for free falling objects. A ball is thrown straight down from the top of a 600-foot building with an initial velocity of -30 feet per second. (a) Determine the position and velocity functions for the ball. (b) Determine the average velocity on the interval [1, 3]. (c) Find the instantaneous velocities when t=1 and t=3. (d) Find the time required for the ball to reach ground level. (e) Find the velocity of the ball at impact.
Answer:
a) v = -30 - 32 t , s (t) = 600 - 30 t -16 t² , b) v = -32 ft / s
c) v (1) = -62 ft / s, v (3) = -126 ft / s , d) t = 7.13 s , e) v = -258.16 ft / s
Explanation:
a) For this exercise they give us the function of the position of the ball
s (t) = s (o) + v_o t - 16 t²
notice that you forgot to write the super index
indicate the initial position of the ball
s (o) = 600 ft
also indicates initial speed
v_o = - 30 ft / s
let's substitute in the equation
s (t) = 600 - 30 t -16 t²
to find the speed we use
v = ds / dt
v = v_o - 32 t
v = -30 - 32 t
b) To find the average speed, look for the speed at the beginning and end of the time interval
t = 1 s
v (1) = -30 -32 1
v (1) = - 62 ft / s
t = 3 s
v (3) = -30 -32 3
v (3) = -126 ft / s
the average speed is
v = (v (3) -v (1)) / (3-1)
v = (-126 +62) / 2
v = -32 ft / s
c) instantaneous speeds, we already calculated them
v (1) = -62 ft / s
v (3) = -126 ft / s
d) the time to reach the ground
in this case s = 0
0 = 600 - 30 t -16 t²
t² + 1,875 t - 37.5 = 0
we solve the quadratic equation
t = [-1,875 ±√ (1,875² + 4 37.5)] / 2
t = [1,875 ± 12.39] / 2
t₁ = 7.13 s
t₂ = negative
Since the time must be positive, the correct answer is t = 7.13 s
e) the speed of the ball on reaching the ground
v = -30 - 32 t
v = -30 - 32 7.13
v = -258.16 ft / s
1. An object with a mass of 15 kilograms is pushed by a force of 30 Newtons. How much does
it accelerate?
Answer: [tex]2m/s^2[/tex]
Explanation:
[tex]Formula: F=ma[/tex]
Where;
F = force
m = mass
a = acceleration
Solve for a;
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{30N}{15kg}\\ a=2m/s^2[/tex]
Question
20
what would be the advantages if your body had magnetic properties science subject
Answer:
Some of the advantages if our body had magnetic properties are as follows:
Magnetic properties can have health benefits such as recovering quickly from a stroke, resolving bladder problems, and reducing blood pressure.Brain will be able to control more activities of the nervous system and other organs of the body using magnetic power.Heart will have many benefits of magnetic properties and able to provide more energy to the entire body through the circulation of blood.Magnetic properties in body will be able to maintain the production of melatonin that controls the sleep patterns.Magnetic properties will be able to kill cancer causing cells.Hence, magnetic properties are somehow beneficial for humans.
The potential (relative to infinity) at the midpoint of a square is 3.0 V when a point charge of Q is located at one of the corners of the square. What is the potential (relative to infinity) at the center when each of the other corners is also contains a point charge of Q
Answer:
12.0 V
Explanation:
Data :
Potential difference due to a single charge (+Q), E = 3.0 V
The Electric potential for the system of charges is given as:
[tex]E=\frac{1}{4\pi \epsilon_o}[\Sigma\frac{Q}{r}][/tex]
for single charge, E = 3.0 V = [tex]\frac{1}{4\pi \epsilon_o}[\frac{Q}{r}][/tex] ->eq(1)
And for 4 charges:
[tex]E=\frac{1}{4\pi \epsilon_o}[4\frac{Q}{r}][/tex] -eq(2)
from eq(1) and (2) we have
E = 4 × 3.0 V = 12 V
When you ride a bicycle, in what direction is the angular velocity of the wheels? When you ride a bicycle, in what direction is the angular velocity of the wheels? to your right forwards up to your left backwards g
When you ride a bicycle, the direction of the angular velocity of the wheels is; Option A; to your left
Complete question is;
When you ride a bicycle, in what direction is the angular velocity of the wheels? A) to your left B) to your right C) forwards D) backwards
While an object rotates, each particle will have a different velocity:
the 'Speed' component will vary with radius while the 'Direction' component will vary with angle.
Now, all of the velocity vectors are aligned in the same plane and as such we can be solve this by choosing a single vector normal to ALL of the possible velocity vectors of the rotating object in that plane.
The convention that will be used to answer this question is known as "Right-hand rule". The angular velocity vector points along the wheel's axle.
For instance, if you Imagine wrapping your right hand around the axle so that your fingers point in the direction of rotation, with your thumb sticking out. You will notice that your thumb points to the left.
Thus;
In conclusion, by right-hand rule, a wheel rotating on a forward - moving bicycle has an angular velocity vector pointing to the rider's left.
Read more at; https://brainly.com/question/25155073
When the distance between a point source of light and a light meter is reduced from 6.0m to 2.0 m, the intensity of illumination at the meter will be the original value multiplied by _____.
Answer:
Explanation:
Let the point source have power P .
At distance r , the intensity I
I = P / 4πr² . If intensity at 6 m and 2 m be I₁ and I₂
I₁ = P / 4π x 6²
I₂ = P / 4π x 2²
I₁ / I₂ = 2² / 6²
= 1 / 9
I₂ = 9 I₁
Intensity will be 9 times that at 6 m .
man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s? Express to 3 sig figs.
Answer:
w₂ = 22.6 rad/s
Explanation:
This exercise the system is formed by platform, man and bricks; For this system, when the bricks are released, the forces are internal, so the kinetic moment is conserved.
Let's write the moment two moments
initial instant. Before releasing bricks
L₀ = I₁ w₁
final moment. After releasing the bricks
[tex]L_{f}[/tex] = I₂W₂
L₀ = L_{f}
I₁ w₁ = I₂ w₂
w₂ = I₁ / I₂ w₁
let's reduce the data to the SI system
w₁ = 1.2 rev / s (2π rad / 1rev) = 7.54 rad / s
let's calculate
w₂ = 6.0/2.0 7.54
w₂ = 22.6 rad/s
Nowdothesameproblemwiththepivotatthe toes. A Ballet dancer puts all her weight on the toes of one foot. If her mass is 60 kg, what is the force that has to be exerted by her leg muscle to hold that pose? Assume the pivot is at the toes.
Answer:
The force is [tex]F = 2400 \ N[/tex]
Explanation:
The diagram for this question is shown on the first uploaded image
From the question we are told that
The mass of the dancer is [tex]m_d = 60 \ kg[/tex]
From the diagram the
The first distance is [tex]l_1 = 20 \ cm[/tex]
The second distance is [tex]l_2 = 5 \ cm[/tex]
At equilibrium the moment about the center of the dancers feet is mathematically represented as
[tex]F * l_2 - (mg* l_1)[/tex]
Where [tex]g= 10 \ m/s^2[/tex]
substituting values
[tex]F * 5 - (60* 9.8 * 20)[/tex]
=> [tex]F = \frac{60 * 10 * 30}{5}[/tex]
=> [tex]F = 2400 \ N[/tex]
EASY! WILL REWARD BRAINLIEST!
Electrical current is defined as _____.
the capacity to store charge
the flow of electric charge per unit time
the amount of stored electric energy
the voltage of the battery
Electrical current is defined as the flow of electric charge per unit time.
You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes zooming up towards you traveling at a horrendous 85.0 km/h. If the siren has a rated frequency 665 Hz, what frequency of the sound do you hear
Answer:
The frequency of the sound you will hear is 713.85 Hz
Explanation:
Given;
speed of your car, [tex]v_s[/tex] = 85.0 km/h
frequency of the siren, f = 665 Hz
Speed of sound in air, v = 345 m/s
The frequency of the sound you hear, can be calculated as;
[tex]f' = f(\frac{v}{v-v_s})[/tex]
Convert the speed of the car to m/s
[tex]85 \ km/h =\frac{85 \ km}{h} (\frac{1000\ m}{1 \ km})(\frac{1 \ h}{3600 \ s} ) = 23.61 \ m/s[/tex]
[tex]f' = f(\frac{v}{v-v_s} )\\\\f' = 665(\frac{345}{345-23.61} )\\\\f' = 665 (1.07346)\\\\f' = 713.85 \ Hz[/tex]
Therefore, the frequency of the sound you will hear is 713.85 Hz
A merry-go-round is shaped like a uniform disk and has moment of inertia of 50,000 kg m 2 . It is rotating so that it has an angular momentum of 10,000 (kg m 2 radians/s) and its outer edge has a speed of 2 m/s. What is its radius, in m
Answer:
r = 20 m
Explanation:
The formula for the angular momentum of a rotating body is given as:
L = mvr
where,
L = Angular Momentum = 10000 kgm²/s
m = mass
v = speed = 2 m/s
r = radius of merry-go-round
Therefore,
10000 kg.m²/s = mr(2 m/s)
m r = (10000 kg.m²/s)/(2 m/s)
m r = 5000 kg.m ------------- equation 1
Now, the moment of inertia of a solid uniform disc about its axis through its center is given as:
I = (1/2) m r²
where,
I = moment of inertia = 50000 kg.m²
Therefore,
50000 kg.m² = (1/2)(m r)(r)
using equation 1, we get:
50000 kg.m² = (1/2)(5000 kg.m)(r)
(50000 kg.m²)/(2500 kg.m) = r
r = 20 m
An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. The direction of the electric field vector of this wave is:___________
Answer:
either +z direction or -z direction.
Explanation:
The direction of the electric field, in an electromagnetic wave always is perpendicular to the direction of the magnetic field and the direction of propagation of the wave.
You assume a system of coordinates with the negative x axis as the west direction, and the y axis as the up direction
In this case, the wave is propagating toward the west (- x direction), and the magnetic field vector points up (+ y direction), then, it is mandatory that the electric field vector points either +z direction or -z direction.
A transformer has a primary coil with 375 turns of wire and a secondary coil with 1,875 turns. An AC voltage source connected across the primary coil has a voltage given by the function Δv = (130 V)sin(ωt). What rms voltage (in V) is measured across the secondary coil?
Answer:
The rms voltage (in V) measured across the secondary coil is 459.62 V
Explanation:
Given;
number of turns in the primary coil, Np = 375 turns
number of turns in the secondary coil, Ns = 1875 turns
peak voltage across the primary coil, Ep = 130 V
peak voltage across the secondary coil, Es = ?
[tex]\frac{N_P}{N_s} = \frac{E_p}{E_s} \\\\E_s = \frac{N_sE_p}{N_p} \\\\E_s = \frac{1875*130}{375} \\\\E_s = 650 \ V[/tex]
The rms voltage (in V) measured across the secondary coil is calculated as;
[tex]V_{rms} = \frac{V_0}{\sqrt{2} } = \frac{E_s}{\sqrt{2} } \\\\V_{rms} = \frac{650}{\sqrt{2} } = 459.62 \ V[/tex]
Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V
What do you call a group of sea turtles?
Answer:
a bale
Explanation:
a bale is a group of turtles
Answer:
A bale or nest
Explanation:
when the same amount of heat is added to equal masses of water and copper at the same temperature the copper is heated to a higher final temperature than water. on a molecular level what explains this difference
a. the average kinetic energy of water molecules is greater than the average kinetic energy of the copper
b.more of the heat is transferred to the potential energy of the water molecules than the potential energy of the copper atoms
c.the intermolecular forces between copper atoms are stronger than those between water molecules
d.more of the heat is transferred to the kinetic energy of the water molecules than to the kinetic energy of the copper atoms
Answer:
C
Explanation:
The intermolecular forces between the water molecule is less binding than that of the copper molecule. Hence the water would take a shorter time to be converted to vapour where the temperature of boiling is constant however the temperature of that of the copper molecule keeps increasing.
As you get ready for bed, you roll up one of your socks into a tight ball and toss it into the laundry basket across the room. Then, you try to toss the other sock without rolling it up.. What effects whether or not your socks land in the basket?
Answer:
The drag (air resistance) it experiences along its flight to the basket, due to the shape and surface area of the socks, the size of the sock (weight), and the speed with which the socks is tossed.
Explanation:
The socks, like every other particle or body travelling through air is met by a resistance that impedes its motion. This resistance is due to the air molecules around, that collide with the body as it travels through them. The resistance offered by this force is proportional to the surface area of the body that collides with the air molecule, so, rolling the socks into a ball reduces the effect of air resistance on the socks, compared to the one tossed without rolling. Air resistance is also largely dependent on the relative motion of the body and the air molecules, the density of the fluid (air), and the size of the body (weight).
Therefore, whether the socks lands in the basket or not is affected by the drag (air resistance) it experiences along its flight to the basket, due to the shape and surface area of the socks, size of the socks (weight), and the speed with which the socks is tossed.
Drag force opposes motion of objects through fluid with its magnitude depending on the velocity of the object in the fluid
The single parameter that effects whether or not the socks lands in the basket is the drag force, [tex]\mathbf{F_D}[/tex] acting on the socks
[tex]F_D = \mathbf{C_D \times A \times \dfrac{\rho \times v_r^2}{2}}[/tex]
The reason that drag force is the parameter that effects the landing point of the socks is as follows:
The parameters that effects whether or not the socks land in the basket or not are;
The distance of the basket away from the thrower = The range, RThe velocity with which the socks are thrown, uThe angle of elevation with which each socks is thrown, θThe amount of drag experienced by each socks, [tex]\mathbf{F_D}[/tex]The parameters, R, u, and θ depends on the thrower, that parameter that effects the whether or not the socks lands in the basket that is independent of the thrower, is the drag, [tex]\mathbf{F_D}[/tex]
Drag is the force opposing (slows) the motion of an object in a fluid.
The drag force, [tex]\mathbf{F_D}[/tex], slowing down motion, is given by the following formula;
[tex]F_D = \mathbf{C_D \times A \times \dfrac{\rho \times v_r^2}{2}}[/tex]
Where;
[tex]v_r[/tex] = The velocity of flow of the fluid, relative to the object
ρ = The density of the fluid
[tex]C_D[/tex] = The drag coefficient
A = The cross sectional area of the fluid
Therefore, the independent parameter that effects whether or not the socks lands in the basket is the drag force on the socks
Learn more about drag force here:
https://brainly.com/question/17074446