5) Which statement about leaders is true?
A) Leaders always make the right decisions.
B) A leader keeps the team focused on achieving its goals.
C) A leader's opinion counts more than the opinions of the other team members.
D) all of the above.
Answer: D) All of the above
Explanation:
why is potassium and sodium considered as reactive metals?
Answer:
because they are found freely in nature uncombined so they are highly reactive with other elements
When a car makes a sharp left turn, what causes the passengers to move toward the right side of the car? *
A centrifugal force
B inertia
C centripetal acceleration
D centripetal force
B, the body at rest becomes reluctant to start moving or a body in motion becomes
reluctant and stop moving once in motion in a straight line
You are testing a new amusement park roller coaster with an empty car with a mass of 130 kg . One part of the track is a vertical loop with a radius of 12.0 m . At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s . Part A As the car rolls from point A to point B, how much work is done by friction
Answer:
work done by friction = 5889 J
Explanation:
We are given;
Mass of car; m = 130 kg
Speed at point A; v1 = 25 m/s
Speed at point B: v2 = 8 m/s
Since radius is 12 m
At point A, distance is; y1 = 12 m
At point B, distance is; y2 = -12 m
Now, formula for work done by all the forces is given by the equation;
Total work;
W_gravity + W_others = K2 - K1
Where W_others is work done by other forces which is equal to work done by friction
Where K2 - K1 is change in kinetic energy.
W_grav is also change in potential energy and is expressed as;
W_grav = mgy1 - mgy2
K2 - K1 = ½m(v1)² - ½m(v2)²
Thus;
mgy1 - mgy2 + W_others = ½m(v1)² - ½m(v2)²
Making W_others the subject;
W_others = ½m(v1)² - ½m(v2)² + mgy2 - mgy1
Plugging in the relevant values;
W_others = (½ × 130 × 25²) - (½ × 130 × 8²) + (130 × 9.8 × -12) - (130 × 9.8 × 12)
W_others = 5889 J
Recall that I earlier said W_others = work done by friction.
Thus, work done by friction = 5889 J
FIRST CORRECT ANSWER GETS BRAINLIEST!!!
Answer:
Light is being absorbed
Hope this helps!
Light is being absorbed
A baseball sits motionless near first base on a baseball diamond. What statement
best explains why the baseball remains motionless?
Answer:
B. There are no forces acting on the ball.
Explanation:
There are no forces acting on the ball.
Answer:
No forces acting upon the ball
Explanation:
newtons law, an object at rest will remain at rest until an force is acted upon the object
If a reflected ray is 55 degrees from the normal line, they what is the angle of the
incident ray from normal?
Answer:
xplanation:
Angle of reflection is measured between the incident ray and the angle which it makes with the normal at the point where incident ray strikes the mirror surface.
Further on reflection, it makes the same angle i.e. angle of reflection is equal to angle of reflection.
Hence, as angle of incidence is 55∘ angle of reflection too is 55∘ and the angle between the incident ray and the reflected ray is 55∘+55∘=110∘
Can someone tell me anything useful about energy management in the human body?
Answer:
The human body carries out its main functions by consuming food and turning it into usable energy. Immediate energy is supplied to the body in the form of adenosine triphosphate (ATP). Since ATP is the primary source of energy for every body function, other stored
Explanation:
this what teacher explain to us
What happens to a light wave that is absorbed by matter
Answer:
In absorption, the frequency of the incoming light wave is at or near the energy levels of the electrons in the matter. The electrons will absorb the energy of the light wave and change their energy state.
Explanation:
A wooden cylinder (in the form of a thin disk) of uniform density and a steel hoop are set side by side, released from rest at the same moment, and roll down an inclined plane towards a wall at the bottom. The cylinder has a larger radius than the hoop, but the hoop weighs more than the cylinder.
Required:
Who reaches the bottom first and why?
Answer:
a. The wooden cylinder b. the wooden cylinder reaches the bottom first because its translational kinetic energy is greater.
Explanation:
a. Who reaches the bottom first
The kinetic energy of the objects is given by
K = 1/2mv² + 1/2Iω² where m = mass of object, v = velocity of object, I = moment of inertia and ω = angular velocity = v/r where r = radius of object
For the wooden cylinder, I = mr²/2 where m = mass of wooden cylinder and r = radius of wooden cylinder and v = velocity of wooden cylinder
So, its kinetic energy, K = 1/2mv² + 1/2(mr²/2)(v/r)²
K = 1/2mv² + 1/4mv²
K = 3mv²/4
For the steel hoop, I' = mr'² where m' = mass of steel hoop and r' = radius of steel hoop and v' = velocity of steel hoop
So, its kinetic energy, K' = 1/2m'v'² + 1/2(m'r'²)(v'/r')²
K' = 1/2m'v'² + 1/2m'v'²
K' = m'v'²
Since both kinetic energies are the same, since the drop from the same height,
K = K'
3mv²/4 = m'v'²
v²/v'² = 4m/3m'
v²/v'² = 4/3(m/m')
v/v' = √[4/3(m/m')]
Since the hoop weighs more than the cylinder m/m' < 1 and 4/3(m/m') < 4/3 ⇒ √ [4/3(m/m')] < √4/3 ⇒ v/v' < 1.16 ⇒ v'/v > 1/1.16 ⇒ v'/v > 0.866. Since 0.866 < 1, it implies v' < v.
Since v' = speed of steel hoop < v = speed of wooden cylinder, the wooden cylinder reaches the bottom first.
b. Why
Since the kinetic energy, K = translational + rotational
We find the translational kinetic energy of each object.
For the wooden cylinder,
K = K₀ + 1/2Iω² where K₀ = translational kinetic energy of wooden cylinder
K - 1/2Iω² = K₀
3/4mv² - 1/2(mr²/2)(v/r)² = K₀
3/4mv² - 1/4mv² = K₀
K₀ = 1/2mv²
For the steel hoop,
K' = K₁ + 1/2I'ω'² where K₁ = translational kinetic energy of steel hoop
K' - 1/2I'ω'² = K₁
m'v'² - 1/2(m'r'²)(v'/r')² = K₁
m'v'² - 1/2m'v'² = K₁
K₁ = 1/2m'v'²
So, K₀/K₁ = 1/2mv²÷1/2m'v'² = mv²/m'v'² = (m/m')(v²/v'²) = (m/m')4/3(m/m') = 4/3(m/m')².
Since (m/m') < 1 ⇒ (m/m')² < 1 ⇒ 4/3(m/m')² < 4/3 ⇒ K₀/K₁ < 1.33 ⇒ K₀ > K₁
So, the kinetic energy of the wooden cylinder is greater than that of the steel hoop.
So, the wooden cylinder reaches the bottom first because its translational kinetic energy is greater.
a. The wooden cylinder b. the wooden cylinder reaches the bottom first because its translational kinetic energy is greater.
What is Kinetic energy?
The energy of the body due to its movement in a particular direction under the influence of a force like a free-falling body due to gravitaional force is called Kinetic energy.
The kinetic energy of the objects is given by
[tex]K = \dfrac{1}{2}mv^2 + \dfrac{1}{2}Iw^2[/tex]
where
m = mass of object,
v = velocity of object,
I = moment of inertia and
ω = angular velocity = v/r where r = radius of object
For the wooden cylinder, I = mr²/2 where m = mass of wooden cylinder and r = radius of wooden cylinder and v = velocity of wooden cylinder
So, its kinetic energy,
[tex]K = \dfrac{1}{2}mv^2 + \dfrac{1}{2}(\dfrac{mr^2}{2})\dfrac{v}{r}^2[/tex]
[tex]K = \dfrac{3mv^2}{4}[/tex]
For the steel hoop,
I' = mr'²
where
m' = mass of steel hoop and
r' = radius of steel hoop and
v' = velocity of steel hoop
So, its kinetic energy,
[tex]K' = \dfrac{1}{2}m'v'^2 + \dfrac{1}{2}(m'r'^2)\dfrac{v'}{r'}^2[/tex]
[tex]K' = \dfrac{1}{2}m'v'^2 + \dfrac{1}{2}m'v'^2[/tex]
K' = m'v'²
Since both kinetic energies are the same, since the drop from the same height,
K = K'
[tex]\dfrac{3mv^2}{4 }= m'v'^2[/tex]
[tex]\dfrac{v^2}{v'^2} =\dfrac{ 4m}{3m'}[/tex]
[tex]\dfrac{v^2}{v'^2} = \dfrac{4}{3}(\dfrac{m}{m'})[/tex]
[tex]\dfrac{v}{v'} = \sqrt{[\dfrac{4}{3}(\dfrac{m}{m'})][/tex]
Since the hoop weighs more than the cylinder m/m' < 1 and 4/3(m/m') < 4/3 ⇒ √ [4/3(m/m')] < √4/3 ⇒ v/v' < 1.16 ⇒ v'/v > 1/1.16 ⇒ v'/v > 0.866. Since 0.866 < 1, it implies v' < v.
Since v' = speed of steel hoop < v = speed of wooden cylinder, the wooden cylinder reaches the bottom first.
(b) Since the kinetic energy, K = translational + rotational
We find the translational kinetic energy of each object.
For the wooden cylinder,
[tex]K = K_o + \dfrac{1}{2}Iw^2[/tex]
where
K₀ = translational kinetic energy of wooden cylinder
[tex]K - \dfrac{1}{2}Iw^2 = K_o[/tex]
[tex]\dfrac{3}{4}mv^2 - \dfrac{1}{2}(\dfrac{mr^2}{2})(\dfrac{v}{r})^2 = K_a[/tex]
[tex]\dfrac{3}{4}mv^2 - \dfrac{1}{4}mv^2 = K_o[/tex]
[tex]K_o = \dfrac{1}{2}mv^2[/tex]
For the steel hoop,
[tex]K' = K_1 + \dfrac{1}{2}I'w'^2[/tex]
where
K₁ = translational kinetic energy of steel hoop
[tex]K' - \dfrac{1}{2}I'w'^2 = K_1[/tex]
[tex]m'v'^2 - \dfrac{1}{2}(m'r'^2)(\dfrac{v'}{r'})^2 = K_1[/tex]
[tex]m'v'^2 - \dfrac{1}{2}m'v'^2 = K_1[/tex]
[tex]K_1= \dfrac{1}{2}m'v'^2[/tex]
So, K₀/K₁ = 1/2mv²÷1/2m'v'² = mv²/m'v'² = (m/m')(v²/v'²) = (m/m')4/3(m/m') = 4/3(m/m')².
Since (m/m') < 1 ⇒ (m/m')² < 1 ⇒ 4/3(m/m')² < 4/3 ⇒ K₀/K₁ < 1.33 ⇒ K₀ > K₁
So, the kinetic energy of the wooden cylinder is greater than that of the steel hoop.
So, the wooden cylinder reaches the bottom first because its translational kinetic energy is greater.
To know more about Kinetic energy follow
https://brainly.com/question/25959744
A uniform sphere has a moment of inertia that is (2/5)MR2. A sphere of uniform density, with mass 29 kg and radius 0.5 m is located at the origin, and rotates around an axis parallel with the x axis. If you stand somewhere on the x axis and look toward the origin at the sphere, the sphere spins counterclockwise. One complete revolution takes 0.5 seconds. What is the rotational angular momentum of the sphere
Answer:
[tex]36.44\ \text{kg m/s}\hat{i}[/tex]
Explanation:
I = Moment of inertia of sphere = [tex]\dfrac{2}{5}MR^2[/tex]
M = Mass of sphere = 29 kg
R = Radius of sphere = 0.5 m
T = Time taken for one revolution = 0.5 s
[tex]\omega[/tex] = Angular velocity = [tex]\dfrac{2\pi}{T}[/tex]
[tex]L=I\omega\\\Rightarrow L=\dfrac{2}{5}MR^2\dfrac{2\pi}{T}\\\Rightarrow L=\dfrac{4MR^2\pi}{5T}\\\Rightarrow L=\dfrac{4\times 29\times 0.5^2\pi}{5\times 0.5}\\\Rightarrow L=36.44\ \text{kg m/s}[/tex]
The rotational angular momentum of the sphere is [tex]36.44\ \text{kg m/s}\hat{i}[/tex].
What forces are used to jump over a wall?
Answer:
Potential and kinetic
Explanation:
What is a transfer of energy called?
A. Displacement
B. Acceleration
C. Work
D. Torque
Review please help.
Answer:
1 and 3
Explanation:
because they are going up from 0
Which option identifies the specific knowledge that the team in the following scenario must possess?
A team of engineers is designing a space probe that will go to Saturn and collect atmospheric samples. The temperature and atmosphere on Saturn are much different from the conditions on Earth.
(A) The team must have a vast knowledge of thermodynamics.
(B) The team must have a vast knowledge of propulsion.
(C) The team must have a vast knowledge of fluid power systems.
(D) The team must have a vast knowledge of acoustics.
Answer:
The team must have a vast knowledge of thermodynamics
Explanation:
Just took the test!!!
Answer:
C. Thermodynamics
Explanation:
Someone help me like please thank you
why entrepreneurs should not be a wild risk taker?
Explanation:
Entrepreneurs are not wild risk takers but are instead calculating risk takers. They appear to be risk takers because they see the market differently than the rest of us do. 3. ... Entrepreneurs tend to be optimistic about their chances for success, and usually their optimism is based in reality.
Becoming informed about economics helps a person understand the reasons a command economy is ideal. role of government in regulating production. why consumers receive tax revenue. reasons an economy must always be completely regulated. Mark this and return
Answer:
Role of government in regulating production
Explanation:
The role of government in regulating show , provides the legal and social framework, uphold competition, provides public goods and services.
What is the role of economics in the community?The community's role in conserving and enhancing common-property resources is well known.
In extra, its role in helping market growth by its power to execute trade agreements among transacting parties belonging to the community network is stressed.
Thus, it provides the legal and social framework, maintains competition, and provides public goods and services.
To learn more about economics in community click here:
https://brainly.com/question/1344575
I WILL GIVE BRAINLIEST TO CORRECT ANSWER
Two boxes are being pulled to the right by a force F across a frictionless table. The force is acting directly on M 2 which is connected to M 1 by a massless cord. Which of the following expressions best represents the acceleration of M 1?
The angle between reflected ray and the normal line is
Answer:
Explanation:
angle of incidence.
How many gallons of water does it take to produce the following:
a. Cheeseburger
b. Pound of butter
c. A pair of jeans
Answer:
a. 660 gallons
b.665 gallons
c. 1,800
Two identical springs of equilibrium length L and spring stiffness kare attached to opposite sides of a block of mass Mto two parallel walls a distance Dfrom each other, where D< 2L. The block moves horizontally along a rail with no friction. At what positions along the rail will the block be stable
Answer:
Hydraulic fracturing
Explanation:
A +3.4 x 10-6 C test charge experiences forces from two other nearby charges: a 3 N force due east and a 15 N force due west. What are the magnitude and direction of the electric field st the location of the test charge?
Answer:
3.53×10⁶ N/c due west
Explanation:
From the question
E = F'/q........................ Equation 1
Where E = Electric Field, F = Net Force, q = Charge.
But,
F' = F₂-F₁...................... Equation 2
Substitute equation 2 into equation 1
E = (F₂-F₁)/q................ Equation 3
Given: F₁ = 3 N due east, F₂ = 15 N due west, q = 3.4×10⁻⁶ C
Substitute these values into equation 1
E = (15-3)/(3.4×10⁻⁶)
E = 12/(3.4×10⁻⁶)
E = 3.53×10⁶ N/c due west
b. Calculate the kinetic energy of the car for group A.
Answer: Kinectic Energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity.
Explanation: If an object with a mass of 10 kg (m=10 kg) is moving at a velocity of 5 meters per second (v=5 m/s), the kinetic energy is equal to 125 Joules, or (1/2* 10 kg) * 5 m/s^2.
What happens to warm air when it cools?
A
It sinks back down to Earth.
B
It is absorbed into clouds.
с
It remains in Earth's upper atmosphere.
D
It breaks apart and disappears.
Answer:
b I'm pretty sure sorry if I'm wrong
Answer:
I think the answer is B
Explanation:
The warm air turns cold and then it goes back to clouds
N4M.6 A board has one end wedged under a rock having a mass of 380 kg and is supported by another rock that touches the bottom side of the board at a point 85 cm from the end under the rock. The board is 4.5 m long, has a mass of about 22 kg, and projects essentially horizontally out over a river. Is it safe for an adult with a mass of 62 kg to stand at the unsupported end of the board
Answer:
it is safe to stand at the end of the table
Explanation:
For this exercise we use the rotational equilibrium condition
Στ = 0
W x₁ - w x₂ - w_table x₃ = 0
M x₁ - m x₂ - m_table x₃ = 0
where the mass of the large rock is M = 380 kg and its distance to the pivot point x₁ = 850 cm = 0.85m
the mass of the man is 62 kg and the distance
x₂ = 4.5 - 0.85
x₂ = 3.65 m
the mass of the table (m_table = 22 kg) is at its geometric center
x_{cm} = L/2 = 2.25 m
x₃ = 2.25 -0.85
x₃ = 1.4 m
let's look for the maximum mass of man
m_{maximum} = [tex]\frac{ M x_1 -m_{table} x_3}{ x_2}[/tex]
let's calculate
m_{maximum} = [tex]\frac{ 380 \ 0.85 - 22 \ 1.4}{3.65}[/tex](380 0.85 - 22 1.4) / 3.65
m_{maximum} = 80 kg
we can see that the maximum mass that the board supports without turning is greater than the mass of man
m_{maximum}> m
consequently it is safe to stand at the end of the table
A wire is oriented along the x-axis. It is connected to two batteries, and a conventional current of 2.6 A runs through the wire, in the x direction. Along 0.17 m of the length of the wire there is a magnetic field of 0.52 tesla in the y direction, due to a large magnet nearby. At other locations in the circuit, the magnetic field due to external sources is negligible. What is the magnitude of the magnetic force on the wire
Answer:
the magnitude of the magnetic force on the wire is 0.2298 N
Explanation:
Given the data in the question;
we know that, the magnitude of magnetic force is given as;
|F[tex]_{mg}^>[/tex] | = I([tex]B^>[/tex] × [tex]L^>[/tex] )
given that
I = 2.6 A
[tex]B^>[/tex] = 0.17
[tex]L^>[/tex] = 0.52
so we substitute
|F[tex]_{mg}^>[/tex] | = 2.6( 0.17i" × 0.52j" )
|F[tex]_{mg}^>[/tex] | = 0.2298 N
Therefore, the magnitude of the magnetic force on the wire is 0.2298 N
answer asap!!! i suck at acceleration
Answer: 2.67
Explanation: it said he went from 0 to 8 in 3 seconds so if we divide eight By three we get 2.67 rounded to the nearest hundredth so you accelerated that 2.67 m/s
A horizontal 2.00\ m2.00 m long, 5.00\ kg5.00 kg uniform beam that lies along the east-west direction is acted on by two forces. At the east end of the beam, a 200\ N200 N forces pushes downward. At the west end of the beam, a 200\ N200 N force pushed upward. What is the angular acceleration of the beam
Answer: [tex]240\ rad/s^2[/tex]
Explanation:
Given
Length of beam [tex]l=2\ m[/tex]
mass of beam [tex]m=5\ kg[/tex]
Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude
[tex]\tau =F\times l=200\times 2=400\ N.m[/tex]
Also, the beam starts rotating about its center
So, the moment of inertia of the beam is
[tex]I=\dfrac{ml^2}{12}=\dfrac{5\times 2^2}{12}\\\\I=\dfrac{5}{3}\ kg.m^2[/tex]
Torque is the product of moment of inertia and angular acceleration
[tex]\Rightarrow \tau=I\alpha\\\\\Rightarrow 400=\dfrac{5}{3}\times \alpha\\\\\Rightarrow \alpha =240\ rad/s^2[/tex]
An object carries a +15.5 uC charge.
It is 0.525 m from a -7.25 uC charge.
What is the magnitude of the electric
force on the object?
Answer:
3.67 N
Explanation:
From the question given above, the following data were obtained:
Charge of 1st object (q₁) = +15.5 μC
Charge of 2nd object (q₂) = –7.25 μC
Distance apart (r) = 0.525 m
Force (F) =?
Next, we shall convert micro coulomb (μC) to coulomb (C). This can be obtained as follow:
For the 1st object
1 μC = 1×10¯⁶ C
Therefore,
15.5 μC = 15.5 × 1×10¯⁶
15.5 μC = 15.5×10¯⁶ C
For the 2nd object:
1 μC = 1×10¯⁶ C
Therefore,
–7.25 μC = –7.25 × 1×10¯⁶
–7.25 μC = –7.25×10¯⁶ C
Finally, we shall determine the force. This can be obtained as follow:
Charge of 1st object (q₁) = +15.5×10¯⁶ C
Charge of 2nd object (q₂) = –7.25×10¯⁶ C
Distance apart (r) = 0.525 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 15.5×10¯⁶ × 7.25×10¯⁶ / 0.525²
F = 3.67 N
Therefore, the force on the object is 3.67 N