Answer:
The answer is "1.0748 and 1.0875".
Explanation:
Please find the complete question in the attachment file.
The incidence angle is [tex]i=45^{\circ}[/tex] for all colors When the angle is r, then use [tex]\frac{\sin{i}}{\sin{r}}=\frac{n_{o}}{n}[/tex] . Snell's rule Where [tex]n_{o}[/tex] is an outside material reflectance (same hue index) or n seems to be the crown glass index of the refraction, That index of inclination is [tex]90^{\circ}[/tex] as the light in color shifted behaver from complete inner diffraction to diffraction.
Whenever the external channel has a thermal conductivity for the red light, that's also
[tex]n_{o}=\frac{n_{r}\sin{45^{\circ}}}{\sin{90^{\circ}}}=\frac{1.520\times\sin{45^{\circ}}}{\sin{90^{\circ}}}=1.0748[/tex]
When outside the material has a refractive index, this happens with violet light.
[tex]n_{o}=\frac{n_{r}\sin{45^{\circ}}}{\sin{90^{\circ}}}=\frac{1.538\times\sin{45^{\circ}}}{\sin{90^{\circ}}}=1.0875[/tex]
In point a, The only red light flows out from the leaned face and the residual colors are mirrored mostly on prism for the primary benefits [tex]n_{o}=1.0748[/tex] (and slightly larger than that).
In point b, The only violet light is shown in the prism with the majority of the colors coming out from the sloping face for a scale similar to [tex]n_{o}= 1.0875[/tex] (and slightly smaller than this).
kid is bouncing on a pogo stick. he oscillates 22.0 times in 14.9 s. What is his period?
Answer:
Period = 0.68 seconds
Explanation:
Given the following data;
Number of oscillation = 22
Time = 14.9 seconds
To find the period;
Method I.
Period = time/number of oscillation
Period = 14.9/22
Period = 0.68 seconds.
Method II.
We would find the frequency of the wave;
Frequency = time/number of oscillation
Frequency = 22/14.9
Frequency = 1.48 Hertz
Next, we find the period;
Period = 1/frequency
Period = 1/1.48
Period = 0.68 seconds
The left end of a spring is attached to a wall. When Bob pulls on the right end with a 200 N force, he stretches the spring by 20 cm. The same spring is then used for a tug-of-war between Bob and Carlos. Each pulls on his end of the spring with a 200 N force. How far does the spring stretch
Answer:
40 cm
Explanation:
Since Bob pulls with a force of F = 200 N when the spring is attached to the wall and it extends a length x = 20 cm, from Hooke's law,
F = kx where k = spring constant
So, k = F/x = 200 N/20 cm = 10 N/cm
Now, sine both Bob and Carlos pull with a force of F = 200 N in opposite directions, the spring stretches about its center and has an extension, x' in each direction.
So, from F = kx
x = F/k = 200 N/10 N/cm = 20 cm
So, the spring stretches 20 cm in both directions.
So, the total extension is thus x' + x' = 2x' = 2(20 cm) = 40 cm
The spring will stretch 40 cm.When a force is act om the spring the spring will stretch or compress depeds on the application of force.
What is hooke's law?Hooke's law states that the force used to extend the spring is directly equal to the amount of stretch.
The force needed to extend the spring is proportional to its displacement. It is stated as
F=Kx
The given data in the problem is;
F is the force of pull to bob= 200 N
x is the length of extension= 20 cm.
F' is the force act on the another end= 200 N
According to Hooke's law,
[tex]\rm F = Kx \\\\ \rm K= \frac{F}{x} \\\\ \rm K= \frac{200}{20} \\\\ \rm K=10 \ N/cm[/tex]
The extension due to another end force is found by;
[tex]\rm x' = \frac{F}{K} \\\\ \rm x' = \frac{200}{10} \\\\ \rm x' = 20[/tex]
The total extension of the spring will be;
[tex]\rm x_t = x+x' \\\\ \rm x_t = 2(20) \\\\ \rm x_t =40\ cm[/tex]
Hence the spring will stretch 40 cm.
To learn more about the hooke's law refer to the link;
https://brainly.com/question/13348278
When you eat food, not all of the food can be broken down into the basic building blocks and why?
Answer:
cause you crazy..
Explanation:
A longitudinal wave is observed. Exactly 6 crests are observed
to move past a given point in 9.1 s. Its wavelength is 2.4 m and
its frequency is 0.66 HZ. What is the speed of the wave?