Answer:
1.95 x 10^8 m/s.
Explanation:
Answer:
the answer is 1.95 x 10^8 m/s
Explanation:
Sr-90 has a half-life of T1/2 = 2.85 a (years). How much Sr-90 will remain in a 5.00 g sample after 5.00 a? Show all of your work. (2 marks)
Answer:
1.48 g
Explanation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is time,
and T is the half life.
A = (5.00 g) (½)^(5.00 a / 2.85 a)
A = 1.48 g
A student drives 105.0 mi with an average speed of 61.0 mi/h for exactly 1 hour and 30
minutes for the first part of the trip. What is the distance in miles traveled during this
time?
Answer:
91.5 miles
Explanation:
61 miles per hour so 61(x amount of hours)
so 61 x 1.5 hours is 91.5 miles
If radio waves are used to communicate with an alien spaceship approaching Earth at 10% of the speed of light c, the aliens would receive our signals at speed of:_______.
a. 0.99c
b. 1.10c
c. 1.00c
d. 0.90c
e. 0.10c
Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c
Answer: 1.00c
Explanation: I got it correct on the homework
determine the smallest mass of lead that when tied using a string to a wooden boat on a pond will be enough to sink the toy boat. assuming specific gravity of wood is 0.5 and density of water is 1000kg per cubic metre?
The density of atmosphere (measured in kilograms/meter3) on a certain planet is found to decrease as altitude increases (as measured from the planet's surface). What type of relationship exists between the altitude and the atmospheric density, and what would the atmospheric density be at an altitude of 1,291 kilometers?
A.
inverse plot, 0.45 kilograms/meter3
B.
inverse plot, 0.51 kilograms/meter3
C.
quadratic plot, 1.05 kilograms/meter3
D.
inverse plot, 1.23 kilograms/meter3
E.
inverse plot, 0.95 kilograms/meter3
' A ' looks like the best choice.
Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
The current through an inductor of inductance L is given by I(t) = Imax sin(ωt).
(a) Derive an expression for the induced emf in the inductor as a function of time.
(b) At t = 0, is the current through the inductor increasing or decreasing?
(c) At t = 0, is the induced emf opposing or aiding the flow of the charge carriers? (Remember that the direction of a positive induced emf is the same as the current direction and the direction of a negative induced emf is opposite the current direction.)
(d) How are the answers to parts b and c consistent with the behavior of inductors discussed in the text?
Answer:
(a) [tex]emf_L=-LI_{max}\omega cos(\omega t)[/tex]
(b) neither increasing or decreasing
(c) opposite to the flow of charge carriers
Explanation:
The current through an inductor of inductance L is given by:
[tex]I(t)=I_{max}sin(\omega t)[/tex] (1)
(a) The induced emf is given by the following formula
[tex]emf_L=-L\frac{dI}{dt}[/tex] (2)
You derivative the expression (1) in the expression (2):
[tex]emf_L=-L\frac{d}{dt}(I_{max}sin(\omega t))\\\\emf_L=-LI_{max}\omega cos(\omega t)[/tex]
(b) At t=0 the current is zero
(c) At t = 0 the emf is:
[tex]emf_L=-\omega LI_{max}[/tex]
w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.
(d) read the text carefully
At t zero, the current through the inductor neither increasing nor decreasing because current is zero.
The current through an inductor of inductance L can be calculated by
[tex]\bold {I_t = I_m_a_x sin (\omega t)}[/tex].........1
(a) The induced emf can be calculated by
[tex]\bold {emf_L = - L \dfrac {dI}{dt}}[/tex]............2
Derivative the equation (1) in the equation (2)
[tex]\bold {emf _L= -L \dfrac {d (I _m_a_x sin (\omega t)} {dt}}\\\\\bold {emf _L= -L (I _m_a_x \omega cos( \omega t) }[/tex]
(b) At t=0 the current is zero,
(c) At t = 0 the emf is:
[tex]\bold {emf_L = -\omega LI _m_a_x}[/tex]
Therefore, at t zero, the current through the inductor neither increasing nor decreasing because current is zero.
To know more about inductance,
https://brainly.com/question/17431388
Two radio antennas A and B radiate in phase. Antenna B is a distance of 100 m to the right of antenna A. Consider point Q along the extension of the line connecting the antennas, a horizontal distance of 50.0 m to the right of antenna B. The frequency, and hence the wavelength, of the emitted waves can be varied.
Required:
a. What is the longest wavelength for which there will be destructive interference at point Q?
b. What is the longest wavelength for which there will be constructive interference at point Q?
Answer:
a. 200 m
b. 100 m
Explanation:
Solution:-
- We will first draw three points marked A,B and Q from left most to right most.
- We are told that the antennas at A and B radiate in phase. This means the radio-waves emitted by each antenna are synchronous in terms of ( frequency and wavelength ).
- We will denote the common wavelength of coherent sources of radio-waves ( A and B ) with λ.
- The relation between the wavelength ( λ ) and the path difference between the source and observation point ( Q ) for the case of destructive interference is:
AQ - BQ = n*λ/2
Where,
n: The order of wavelength
AQ: The distance between antenna A and point Q
BQ: The distance between antenna B and point Q
- The point Q is positioned ( 100 + 50 ) m away from antenna A and 50 m from antenna B. Hence,
150 - 50 = n*λ/2
- To determine the longest wavelength ( λ ) to meet destructively at point Q with the given path difference. The order of wavelength ( n ) must be minimum ( 1 ). Therefore,
100 = λ/2
λ = 200 m .... Answer
- The relation between the wavelength ( λ ) and the path difference between the source and observation point ( Q ) for the case of constructive interference is:
AQ - BQ = n*λ
Where,
n: The order of wavelength
AQ: The distance between antenna A and point Q
BQ: The distance between antenna B and point Q
- The point Q is positioned ( 100 + 50 ) m away from antenna A and 50 m from antenna B. Hence,
150 - 50 = n*λ
- To determine the longest wavelength ( λ ) to meet constructively at point Q with the given path difference. The order of wavelength ( n ) must be minimum ( 1 ). Therefore,
100 = λ
λ = 100 m .... Answer
What's a line of best fit? Will give BRAINLIEST
A line of best fit expresses the relationship between the points.
Explanation:
It does not go through all the points but goes through most of them and it is like a hardrawn curve
Two carts undergo an inelastic collision where they stick together. Cart A has an initial velocity v0, and the second cart B is initially at rest. After the collision, it is observed that the ratio of the final kinetic energy system to its initial kinetic energy is KfK0= 1/6. Determine the ratio of the carts' masses, mBmA. (Assume the track is frictionless.)
Answer:
Explanation:
Initial kinetic energy of the system = 1/2 mA v0²
If Vf be the final velocity of both the carts
applying conservation of momentum
final velocity
Vf = mAvo / ( mA +mB)
kinetic energy ( final ) = 1/2 (mA +mB)mA²vo² / ( mA +mB)²
= mA²vo² / 2( mA +mB)
Given 1/2 mA v0² / mA²vo² / 2( mA +mB) = 6
mA v0² x ( mA +mB) / mA²vo² = 6
( mA +mB) / mA = 6
mA + mB = 6 mA
5 mA = mB
mB / mA = 5 .
A block is supported on a compressed spring, which projects the block straight up in the air at velocity VVoj The spring and ledge it sits on then retract. You can win a prize by hitting the block with a ball. When should you throw the ball and in what direction to be sure the ball hits the block?
A. At the instant when the block is at the highest point, directed at the spring.
B. At the instant when the block is at the highest point, directed at the block.
C. At the instant when the block leaves the spring, directed at the spring.
D. At the instant when the block leaves the spring, directed at the block.
E. When the block is back at the spring's original position, directed at that position.
Answer:
the correct answer is B
Explanation:
We analyze this exercise a little, the block goes into the air and is under the acceleration of gravity. The ball is fired by the hand and is describing a parabolic movement, subjected to the acceleration of gravity.
For the ball to hit the block we must have the distance the ball goes up equal to the distance the block moves, therefore we must shoot the ball at the block at its highest point.
Let's write the kinematic equation for the two bodies
The block. At the highest point of the path
y = - ½ g t2
The ball, in its vertical movement
y = vo t - ½ g t2
therefore the correct answer is B
Two parallel plates having charges of equal magnitude but opposite sign are separated by 21.0 cm. Each plate has a surface charge density of 39.0 nC/m2. A proton is released from rest at the positive plate. (a) Determine the magnitude of the electric field between the plates from the charge density.
Answer:
E = 3.45*10^-19 N/C
Explanation:
a) The electric field between two parallel plates id given by the following formula:
[tex]E=\frac{\sigma}{\epsilon_o}[/tex] (1)
where:
σ: surface charge density of the plates = 39.0nC/m^2
εo: dielectric permittivity of vacuum = 8.85*10^-12 C/Nm^2
You replace these values in the equation (1):
[tex]E=\frac{39.0*10^{-9}C/m^2}{8.85*10^{-12}C^2/Nm^2}\\\\E=3.45*10^{-19}\frac{N}{C}[/tex]
The electric field in between the parallel plates is 3.45*10^-19 N/C
A solid exerts a force of 500 N. Calculate the pressure exerted to the surface where area
of contact is 2000 cm2.
Answer:
2500 N/m²
Explanation:
Pressure: This can be defined as the force acting normally on a surface per unit area.
The expression for pressure is give as
P = F/A...................... Equation 1
Where P = pressure (N/m²), F = force (N), A = Contact area (m²)
Given: F = 500 N, A = 2000 cm² = (2000/10000) m = 0.2 m.
Substitute into equation 1
P = 500/0.2
P = 2500 N/m²
Hence the pressure exerted to the surface is 2500 N/m²
To study the properties of various particles, you can accelerate the particles with electric fields. A positron is a particle with the same mass as an electron but the opposite charge ( e). If a positron is accelerated by a constant electric field of magnitude 286 N/C, find the following.
(a) Find the acceleration of the positron. m/s2
(b) Find the positron's speed after 8.70 × 10-9 s. Assume that the positron started from rest. m/s
Answer:
a) a = 5.03x10¹³ m/s²
b) [tex]V_{f} = 4.4 \cdot 10^{5} m/s [/tex]
Explanation:
a) The acceleration of the positron can be found as follows:
[tex] F = q*E [/tex] (1)
Also,
[tex] F = ma [/tex] (2)
By entering equation (1) into (2), we have:
[tex] a = \frac{F}{m} = \frac{qE}{m} [/tex]
Where:
F: is the electric force
m: is the particle's mass = 9.1x10⁻³¹ kg
q: is the charge of the positron = 1.6x10⁻¹⁹ C
E: is the electric field = 286 N/C
[tex] a = \frac{qE}{m} = \frac{1.6 \cdot 10^{-19} C*286 N/C}{9.1 \cdot 10^{-31} kg} = 5.03 \cdot 10^{13} m/s^{2} [/tex]
b) The positron's speed can be calculated using the following equation:
[tex] V_{f} = V_{0} + at [/tex]
Where:
[tex]V_{f}[/tex]: is the final speed =?
[tex]V_{0}[/tex]: is the initial speed =0
t: is the time = 8.70x10⁻⁹ s
[tex] V_{f} = V_{0} + at = 0 + 5.03 \cdot 10^{13} m/s^{2}*8.70 \cdot 10^{-9} s = 4.4 \cdot 10^{5} m/s [/tex]
I hope it helps you!
How much displacement will a spring with a constant of 120N / m achieve if it is stretched by a force of 60N?
Answer:
Explanation:
There's a formula for this:
[tex]F = k*displacement[/tex]
F being force, k being the spring constant, and displacement being the change in x
We are given the force and the spring constant, so this is essentially isolating the Δx term. Do 60N/120N per meter. The newtons cancel out and you get a final answer of Δx = 0.5 meters
Suppose the demand for air travel decreases (as illustrated in the graph below). A decrease in demand _____ the equilibrium price for air travel and _____ the equilibrium quantity for air travel. decreases, decreases increases, increases decreases, increases
Answer:
decreases, decreases
Explanation:
A decrease in the demand will create a fall in equilibrium prices and the quantity supplied will also decrease. As the equilibrium prices in the market are the price in which the quantity demanded equals to quantity supplied. If the demand for the air decreases then the quantity of the air travel will also decrease and thus when the supply and demand change so do the changes associated with the equilibrium prices.physics I need help :(
Espresso is a coffee beverage made by forcing steam through finely ground coffee beans. Modern espresso makers generate steam at very high pressures and temperatures, but in this problem we'll consider a low-tech espresso machine that only generates steam at 100?C and atomospheric pressure--not much good for making your favorite coffee beverage.The amount of heat Q needed to turn a mass m of room temperature ( T1) water into steam at 100?C ( T2) can be found using the specific heat c of water and the heat of vaporization Hv of water at 1 atmosphere of pressure.Suppose that a commercial espresso machine in a coffee shop turns 1.50 kg of water at 22.0?C into steam at 100?C. If c=4187J/(kg??C) and Hv=2,258kJ/kg, how much heat Q is absorbed by the water from the heating resistor inside the machine?Assume that this is a closed and isolated system.Express your answer in joules to three significant figures.Q = _________________ J
Answer:
Q = 3877 KJ
Explanation:
Since, the system is closed and isolated. Therefore, the law of conservation of energy can be written as:
Heat Absorbed By Water (Q) = Heat required to raise the temperature of water (Q₁) + Heat required to convert water to steam (Q₂)
Q = Q₁ + Q₂ ----- equation (1)
Now, for Q₁:
Q₁ = m C ΔT
where,
m = Mass of Water = 1.5 kg
C = Specific Heat of Water = 4187 J/kg.°C
ΔT = Change in Temperature of Water = T₂ - T₁ = 100°C - 22°C = 78°C
Therefore,
Q₁ = (1.5 kg)(4187 J/kg.°C)(78°C)
Q₁ = 490 x 10³ J =490 KJ
Now, for Q₂:
Q₂ = m H
where,
m = Mass of Water = 1.5 kg
H = Heat of Vaporization of Water = 2258 KJ/kg
Therefore,
Q₂ = (1.5 kg)(2258 KJ/kg)
Q₂ = 3387 KJ
Substituting the values in equation (1), we get:
Q = Q₁ + Q₂
Q = 490 KJ + 3387 KJ
Q = 3877 KJ
Question 7 of 10
The coefficient of kinetic friction between a couch and the floor is 0.4. If the
couch has a mass of 35 kg and you push it with a force of 200 N. what is the
net force on the couch as it slides?
O A. 337 N
B. 143 N
O C. 343 N
O D. 63 N
Answer:
D
Explanation:
Now the net force is the applied force minus the frictional force; this is expressed mathematically as:
Fnet= Fappplied - Ffrictional
Now the frictional force is given as ;
Coefficient of friction × normal reaction
Normal reaction is the weight of the human acting in opposite direction.
Normal reaction of the human is ;
35 × 9.8 = 343N { note that weight = m× g and g= 9.8m/S2, a known standard }
Hence the Frictional force =343×0.4 =137.20N
Hence Fnet = 200-137.20 = 62.8N
Fnet = 63N to the nearest whole
The net force on the couch as it slides is 63N.
What is frictional force?
When an object is moving on a rough surface, it experiences opposition. This opposing force is called the friction force.
The friction force is given by
f = coefficient of friction x Normal force
Given, the coefficient of kinetic friction between a couch and the floor is 0.4. If the couch has a mass of 35 kg and you push it with a force of 200 N.
Normal reaction is the weight of the human acting in opposite direction.
Normal reaction N =35 × 9.8 = 343N
Frictional force f =0.4 x 343
f =137.20N
The net force will be
Fnet= Fappplied - Ffrictional
Fnet = 200-137.20 = 62.8N
Fnet = 63N
Thus, the net force on the couch as it slides is 63N.
Learn more about friction force.
https://brainly.com/question/1714663
#SPJ2
How many significant figures does 0.09164500561 have?
Answer:
10 Sig Figs
Explanation:
Just start counting at the first non zero after the decimal so in this case the nine, and count all of the numbers including zeros after that.
A physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the Teflon frying pan is only 0.400 N. Knowing the coefficient of kinetic friction between the two materials (0.04), he quickly calculates the normal force. What is it (in N)? N
Answer:
normal force = 10 N
Explanation:
Given data
frictional force = 0.400 N
coefficient of kinetic friction = 0.04
Solution
we get here normal force that is express as
normal force = [tex]\frac{Frictional\ force}{coefficient\ of\ friction}[/tex] ............1
put here value and we will get value
normal force = [tex]\frac{0.400}{0.04}[/tex]
solve it we get
normal force = 10 N
A driver wearing a seat beat decelerates at roughly the same rate as the car it self. Since many modern cars have a "crumble zone" built into the front of the car, let us assume that the car decelerates of a distance of 0.9 m. What is the net force acting on a 65 kg driver who is driving at 18 m/sec and comes to rest in this distance
Answer:
11,700Newton
Explanation:
According to Newton's second law, Force = mass × acceleration
Given mass = 65kg.
Acceleration if the car can be gotten using one of the equation of motion as shown.
v² = u²+2as
v is the final velocity = 18m/s
u is the initial velocity = 0m/s
a is the acceleration
s is the distance travelled = 0.9m
On substitution;
18² = 0²+2a(0.9)
18² = 1.8a
a = 324/1.8
a = 180m/²
Net force acting on the body = 65×180
Net force acting on the body = 11,700Newton
The starships of the Solar Federation are marked with the symbol of the Federation, a circle, whereas starships of the Denebian Empire are marked with the Empire's symbol, an ellipse whose major axis is n times its minor axis (a=nb in the figure ).
How fast, relative to an observer, does an Empire ship have to travel for its markings to be confused with those of a Federation ship? Use c for the speed of light in a vacuum.
Express your answer in terms of n and c.
Complete question
The complete question is shown on the first uploaded image
Answer:
The velocity is [tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]
Explanation:
From the question we are told that
a = nb
The length of the minor axis of the symbol of the Federation, a circle, seen by the observer at velocity v must be equal to the minor axis(b) of the Empire's symbol, (an ellipse)
Now this length seen by the observer can be mathematically represented as
[tex]h = t \sqrt{1 - \frac{v^2}{c^2} }[/tex]
Here t is the actual length of the major axis of of the Empire's symbol, (an ellipse)
So t = a = nb
and b is the length of the minor axis of the symbol of the Federation, (a circle) when seen by an observer at velocity v which from the question must be the length of the minor axis of the of the Empire's symbol, (an ellipse)
i.e h = b
So
[tex]b = nb [\sqrt{1 - \frac{v^2}{c^2} } ][/tex]
[tex][\frac{1}{n} ]^2 = 1 - \frac{v^2}{c^2}[/tex]
[tex]v^2 =c^2 [1- \frac{1}{n^2} ][/tex]
[tex]v^2 =c^2 [\frac{n^2 -1}{n^2} ][/tex]
[tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]
A fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 5.37x10-2 kg/s. The density of the gasoline is 739 kg/m3, and the radius of the fuel line is 3.37x10-3 m. What is the speed at which gasoline moves through the fuel line
Answer:
Speed v = 2.04 m/s
the speed at which gasoline moves through the fuel line is 2.04 m/s
Explanation:
Given;
Mass transfer rate m = 5.37x10^-2 kg/s.
Density d = 739 kg/m3
radius of pipe r = 3.37x10^-3 m
We know that;
Density = mass/volume
Volume = mass/density
Volumetric flow rate V = mass transfer rate/density
V = m/d
V = 5.37x10^-2 kg/s ÷ 739 kg/m3
V = 0.00007266576454 m^3/s
V = 7.267 × 10^-5 m^3/s
V = cross sectional area × speed
V = Av
Area A = πr^2
V = πr^2 × v
v = V/πr^2
Substituting the given values;
v = 7.267 × 10^-5 m^3/s/(π×(3.37x10^-3 m)^2))
v = 0.203678639672 × 10 m/s
v = 2.04 m/s
the speed at which gasoline moves through the fuel line is 2.04 m/s
Astrophysicist Neil deGrasse Tyson steps into an elevator on the 29th floor of a skyscraper. For some odd reason, there is a scale on the floor of the elevator. Neil, whose mass is about 115 kg, decides to step on the scale and presses the button for a lower floor. The elevator starts traveling downwards with a constant acceleration of 1.5 m/s2 for 6.0 seconds, and then travels at a constant velocity for 6.0 seconds. Finally, the elevator has an upward acceleration of 1.5 m/s2 for 6.0 seconds as it comes to a stop.
A. If each floor is approximately 4 m tall, which floor does the elevator stop at?
B. If the mass of the elevator is 1,200 kg, what is the maximum tension of the elevator cable?
Answer:
A. Final Floor = 15.5 = 15 (Considering downward portion of elevator)
B. T = 14859.5 N = 14.89 KN
Explanation:
A.
First we calculate distance covered by the elevator during downward motion. Downward motion consists of two parts. First one is uniformly accelerated. For that part we use 2nd equation of motion:
s₁ = Vi t + (0.5)at²
where,
s₁ = distance covered during accelerated downward motion = ?
Vi = initial speed = 0 m/s (since elevator is initially at rest)
t = time taken = 6 s
a = acceleration = 1.5 m/s²
Therefore,
s₁ = (0 m/s)(6 s) + (0.5)(1.5 m/s²)(6 s)²
s₁ = 4.5 m
also we find the final velocity using 1st equation of motion:
Vf = Vi + at
Vf = 0 m/s + (1.5 m/s²)(6 s)
Vf = 9 m/s
Now, the second part of downward motion is with constant velocity. So:
s₂ = vt
where,
s₂ = distance covered during constant speed downward motion = ?
v = Vf = 9 m/s
t = 6 s
Therefore,
s₂ = (9 m/s)(6 s)
s₂ = 54 m
Now for distance covered during upward motion is given by the 2nd equation of motion. Since the values of acceleration and time are same. Therefore, it will be equal in magnitude to s₁:
s₃ = s₁ = 4.5 m
Therefore, the total distance covered by elevator is given by following equation:
s = s₁ + s₂ - s₃ (Downward motion taken positive)
s = 4.5 m + 54 m - 4.5 m
s = 54 m
Therefore, net motion of the elevator was 54 m downwards.
So the final floor will be:
Final Floor = Initial Floor - Distance Covered/Length of a floor
Final Floor = 29 - 54 m/4m
Final Floor = 15.5 = 15 (Considering the downward portion or floor of elevator)
B.
The maximum tension will occur during the upward accelerated motion. It is given by the formula:
T = m(g + a)
where,
T = Max. Tension in Cable = ?
m = total mass of person and elevator = 115 kg + 1200 kg = 1315 kg
g = 9.8 m/s²
a = acceleration = 1.5 m/s²
Therefore,
T = (1315 kg)(9.8 m/s² + 1.5 m/s²)
T = 14859.5 N = 14.89 KN
A 2 kg car moving towards the right at 4 m/s collides head on with an 8 kg car moving towards the left at 2 m/s, and they stick together. After the collision, the velocity of the combined bodies is:_____________.
a) 2.4 m/s towards the left.
b) 2.4 m/s towards the right.
c) 0.8 m/s towards the left.
d) 0
e) 0.8 m/s towards the right.
Answer:
correct answer is c
v = -0.8 m / s
Explanation:
This is a problem of quantity of movement, for this we must define a system formed by the two cars, so that the forces during the collision are internal and therefore the quantity of movement is conserved
initial
p₀ = m₁ v₁ - m₂ v₂
final
= (m₁ + m₂) v
We have taken the direction to the right as positive
p₀ =p_{f}
m₁ v₁ - m₂ v₂ = (m₁ + m₂) v
v = (m₁ v₁ - m₂ v₂) / (m₁ + m₂)
we calculate
v = (2 4 - 8 2) / (2 + 8)
v = (8 -16) / 10
v = -0.8 m / s
the negative sign indicates that the set is moving to the left
correct answer is c
Which person will most likely hear the loudest sound?
A
B
C
D
Answer:
The youngest person
Explanation:
Hearing worsens with age
Please mark brainliest
Answer:
A
Explanation:
The person closest to the origin of the sound will most likely hear the loudest sound. ^^
ii.
The drift velocity
(b) A 1800w toaster, a 1.3KW electric frying pan, and a 100w lamp are plugged to the same
20A, 120V circuit.
i.
What current is drawn by each device and what is the resistance of each device?
State whether this combination will blow the fuse or not.
Answer:
toaster -- 15 A, 8 Ωfry pan -- 10.83 A, 11.08 Ωlamp -- 0.83 A, 144 Ωfuse will blowExplanation:
P = VI
I = P/V = P/120
R = V/I = V/(P/V) = V^2/P = 14400/P
Toaster: I = 1800/120 = 15 . . . amps
R = 14400/1800 = 8 . . . ohms
Fry pan: I = 1300/120 = 10.833 . . . amps
R = 14400/1300 = 11.08 . . . ohms
Lamp: I = 100/120 = 0.833 . . . amps
R = 14400/100 = 144 . . . ohms
The total current exceeds 20 A, so will blow the fuse.
Why do bears activity increase as certain points during the day
Because they are well rested and have to work to get food in their system.
g it as been suggested that solar powered space ships could get a boost from a laser either on earth or in orbit around earth. the laser would have to be very powerful to give any measurable benefit to the ship. if the laser produces a 0.18-m diameter beam of 490-nm light, what is the minimum angular spread of the beam?
Answer:
The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians (or 3.32 μrad).
Explanation:
The minimum angular spread of a wave is the ratio of its narrowest diameter to its wavelength.
From Rayleigh's formula,
Angular spread = 1.22 (wavelength ÷ diameter)
= 1.22 (λ ÷ D)
Given that:
diameter, D = 0.18 m and wavelength, λ = 490 nm, then;
Angular spread of the laser beam = 1.22 (λ ÷ D)
= 1.22[tex](\frac{490*10^{-9} }{0.18})[/tex]
= 1.22× 2.7222 × [tex]10^{-6}[/tex]
= 3.3211 × [tex]10^{-6}[/tex] rad
The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians.
can a body be in equilibrium if only one external force act on its ? explain
Answer:
Explanation:
If there is only 1 force, the body can never be in equilibrium, providing that the force is not zero (and that would hardly be a force. Zero is possible in math and it means something. It is debatable in physics).
You cannot think of a condition where something is stationary on planet earth and there are not 2 forces or more forces involved.
Think of something like a block of wood sitting on a table. It is not moving, we'll say. Gravity is holding it down, but what is pushing up on it?
The table is. There are 2 forces and they are equal in magnitude, but opposite in direction. That matters.