Answer:
t = 5.03 s
Explanation:
To find the time interval when Sheila encounter her brother, you first calculate the angular speed of both Sheila and her brother.
You use the following formula:
[tex]\omega = \frac{v}{r}[/tex]
w: angular speed
v: tangential speed
r: radius of the trajectory = 8 m
For you have:
[tex]\omega=\frac{4m/s}{8m}=0.5\frac{rad}{s}[/tex]
For her brother:
[tex]\omega'=\frac{6m/s}{8m}=0.75\frac{rad}{s}[/tex]
Next, they will encounter to each other when the angular distance of the Brother of sheila equals the angular distance of Sheila in the opposite direction. This can be written as follow:
[tex]\theta=\omega t\\\\\theta'=\omega ' t[/tex]
They encounter for θ = 2π-θ':
[tex]\omega t=2\pi-\omega' t[/tex]
You replace the values of the parameters in the previous equation and solve for t:
[tex]0.5t=2\pi-0.75t\\\\1.25t=2\pi\\\\t=5.026\approx5.03[/tex]
Hence, Sheila encounter her brother in 5.03 s
A point charge is located at the center of a thin spherical conducting shell of inner and outer radii r1 and r2, respectively. A second thin spherical conducting shell of inner and outer radii R1 and R2, respectively, is concentric with the first shell. The flux is as follows for the different regions of this arrangement. Ф -10.3 103 N-m2/C for
0 for r<2 4:
-36.8 x 10נ N-m2/c
0 for r > R2
36.8 x 10נ N-m2/c
Determine the magnitude ond sign of the point chorge ond the charge on the surface of the two shels point charge inner shell outer shel.
Answer:
the magnitude is 7 and sign of the point charge on the surface shell is -13
Explanation:
6. When a positive charge is released and moves along an electric field line, it moves to a position of A) lower potential and lower potential energy. B) lower potential and higher potential energy. C) higher potential and lower potential energy. D) higher potential and higher potential energy.
Answer:
Since you would have to do work on the charge to bring it back to its original position, the charge moves to a position of lower potential and lower potential energy.
The positive charge is released from a point such that it will move along an uniform electric field to the position of lower potential and lower potential energy. Therefore, option (A) is correct,
When a positive charge (say +Q) is released from a point (say A) and moves in an uniform electric field to reach the point (say B), then some work is done on the charge. This work done is given as,
[tex]W=+Q(V_{A}-V_{B})[/tex]
Here, [tex]V_{A}[/tex] and [tex]V_{B}[/tex] are the potential differences between the points A and B respectively..
This means the charge is moving from higher potential to lower potential. And since it is moving along the uniform electric field, therefore the electric potential energy of charged system is decreased.
Thus, we conclude that on releasing the positive charge from a point, it starts moving along the electric field towards the direction of lower electric potential and lower electric potential energy. Hence, option (A) is correct.
Learn more about electric potential and electric potential energy here:
https://brainly.com/question/12645463?referrer=searchResults
A student writes down several steps of scientific method. Put the steps in the best order
Answer:
Make a hypothesis, conduct an experiment, Analyze the experimental data..
This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating strings. Assume that the rod is initially electrically neutral. For convenience we will refer to the left end of the rod as end A, and the right end of the rod as end B. In the answer options for this problem, "strongly attracted/repelled" means "attracted/repelled with a force of magnitude similar to that which would exist between two charged balls.A small metal ball is given a negative charge, then brought near (i.e., within about 1/10 the length of the rod) to end A of the rod. What happens to end A of the rod when the ball approaches it closely this first time?
Answer:
rod end A is strongly attracted towards the balls
rod end B is weakly repelled by the ball as it is at a greater distance
Explanation:
When the ball with a negative charge approaches the A end of the neutral bar, the charge of the same sign will repel and as they move they move to the left end, leaving the rod with a positive charge at the A end and a negative charge of equal value at end B.
Therefore rod end A is strongly attracted towards the balls and
rod end B is weakly repelled by the ball as it is at a greater distance
In each pair, select a substance that is a better heat conductor.
1. copper wire / wood 3. water / iron
2. water / air 4. iron / glass
Answer:
1)copper wire
Explanation:
it is the best electric conductor
Engineers and science fiction writers have proposed designing space stations in the shape of a rotating wheel or ring, which would allow astronauts to experience a sort of artificial gravity when walking along the inner wall of the station's outer rim. (a) Imagine one such station with a diameter of 104 m, where the apparent gravity is 2.20 m/s2 at the outer rim. How fast is the station rotating in revolutions per minute
Answer:
f = 1.96 revolutions per minute
Explanation:
The formula for the the frequency of revolution of a satellite, to develop an artificial gravity, with the help of centripetal acceleration is given as follows:
f = (1/2π)√(ac/r)
where,
f = frequency of rotation = ?
ac = centripetal acceleration= apparent gravity or artificial gravity = 2.2 m/s²
r = radius of station or satellite = diameter/2 = 104 m/2 = 52 m
Therefore,
f = (1/2π)√[(2.2 m/s²)/(52 m)]
f = (0.032 rev/s)(60 s/min)
f = 1.96 revolutions per minute
You are comparing a reaction that produces a chemical change and one that produces a physical change. What evidence could you use to determine which type of change is occurring?
Answer: A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding. Often, physical changes can be undone, if energy is input.
Explanation: hope this helps have a good day
Answer:
If the reaction is a chemical change, new substances with different properties and identities are formed. This may be indicated by the production of an odor, a change in color or energy, or the formation of a solid.
Of one of the planets becomes a black hole , what would the escape speed be?
Answer:
If, instead, that rocket was on a planet with the same mass as Earth but half the diameter, the escape velocity would be 15.8 km/s Any object that is smaller than its Schwarzschild radius is a black hole – in other words, anything with an escape velocity greater than the speed of light is a black hole.
Explanation:
brainlies plssssssssssssssssss!
N capacitors are connected in parallel to form a "capacitor circuit". The capacitance of first capacitor is C, second one is C/2 and third one is C/4, forth one is C/8 and so on. Namely, capacitance of a capacitor is one-half of the previous one. What is the equivalent capacitance of this parallel combination when N goes to inifinity?
Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.
Consider a system of a cliff diver and the earth. The gravitational potential energy of the system decreases by 24,500 J as the diver drops to the water from a height of 44.0 m. Determine her weight in newtons.
Before she jumped from the cliff, her gravitational potential energy was
GPE = (her weight) x (height of the cliff) .
That's exactly the GPE that she lost on the way down to the water. So we can write
24,500 J = (her weight) x (44.0 m)
Divide each side by 44.0 m:
Her weight = 24,500 J / 44 m
Her weight = 556.8 Newtons
(about 125 pounds)
I need help physics
Water flows at 0.850 m/s from a hot water heater, through a 450-kPa pressure regulator. The pressure in the pipe supplying an upstairs bathtub 3.70m above the heater is 414-kPa. What's the flow speed in this pipe?
Answer:
The velocity is [tex]v_2= 0.45 \ m/s[/tex]
Explanation:
From the question we are told that
The initial speed of the hot water is [tex]v_1 = 0.85 \ m/s[/tex]
The pressure from the heater [tex]P_1 = 450 \ KPa = 450 *10^{3} \ Pa[/tex]
The height of the hot water before flowing is [tex]h_1 = 0 \ m[/tex]
The height of bathtub above the heater is [tex]h_2 = 3.70 \ m[/tex]
The pressure in the pipe is [tex]P_2 = 414 KPa = 414 *10^{3} \ Pa[/tex]
The density of water is [tex]\rho = 1000 \ kg/m^3[/tex]
Apply Bernoulli equation
[tex]P_1 + \rho gh_1 +\frac{1}{2} \rho v_1^2 = \rho g h_2 + \frac{1}{2}\rho v_2 ^2[/tex]
Substituting values
[tex](450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) = (1000 * *9.8*3.70) + (0.5*1000*v_2^2 )[/tex]
=> [tex]v_2^2 = \frac{ (450 *10^{3}) + (1000 * 9.8 *0 ) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}[/tex]
=> [tex]v_2= \sqrt{ \frac{ (450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}}[/tex]
=> [tex]v_2= 0.45 \ m/s[/tex]
a vector has components x=6 m and y=8 m. what is its magnitude and direction?
Answer: 10m
Explanation:
The magnitude of the vector would be 10
[tex]\sqrt{6^{2}+8^{2} } =10[/tex]
Now consider a different electromagnetic wave, also described by: Ex(z,t) = Eocos(kz - ω t + φ) In this equation, k = 2π/λ is the wavenumber and ω = 2π f is the angular frequency. In this case, though, assume φ = +30o and Eo = 1 kV/m. What is the value of Ex(z,t) when z/λ = 0.25 and ft = 0.125?
Answer:
Explanation:
Ex(z,t) = Eocos(kz - ω t + φ)
k = 2π/λ , ω = 2π f
φ = +30° , E₀ = 10³ V .
z/λ = 0.25 , ft = 0.125
Ex(z,t) = Eocos(2πz/λ - 2πf t + φ)
Putting the values given above
Ex(z,t) = 10³ cos ( 2π / 4 - 2π x .125 + 30⁰ )
= 1000cos (90⁰ - 45+30)
= 1000 cos 75
=258.8 V .
What is the period of a wave if the frequency is? 5 Hz
Answer: If the woodpecker drums upon a tree 5 times in one second, then the frequency is 5 Hz; each drum must endure for one-fifth a second, so the period is 0.2 s.
The amount of friction divided by the weight of an object forms a unit less number called the
Answer:
Coefficient of friction.
Explanation:
The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :
[tex]F=\mu N[/tex]
N is normal force.
[tex]\mu[/tex] = coefficient of friction
[tex]\mu=\dfrac{F}{N}[/tex]
Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest.
Car A: 500 kg, 10 m/s,
Car B: 2000 kg, 5 m/s,
Car C: 500 kg, 20 m/s,
Car D: 1000 kg, 20 m/s,
Car E: 4000 kg, 5 m/s, and
Car F: 1000 kg, 10 m/s.
(a) Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest.
(b) Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest.
Answer:
a)Car E = Car D > (Car F = Car B = Car C) > Car A
b)Car E = Car D > (Car F = Car B = Car C) > Car A
Explanation:
Car A: mass = 500 kg; speed = 10 m/s
Car B: mass = 2000 kg;speed = 5 m/s
Car C:mass = 500 kg; speed = 20 m/s
Car D: mass = 1000 kg; speed = 20 m/s
Car E:mass = 4000 kg; speed = 5 m/s
Car F: mass = 1000 kg; speed = 10 m/s
Part a) Now we know that momentum of each car is product of mass and velocity , so we will have
CarA:
[tex]P_1 = m \times v\\P_1 = (500)(10)\\P_1 = 5 \times 10^3 kg m/s[/tex]
Car B:
[tex]P_2 = m v\\P_2 = (2000)(5)\\P_2 = 10^4 kg m/s[/tex]
Car C:
[tex]P_3 = m v\\P_3 = (500)(20)\\P_3 = 10^4 kg m/s[/tex]
Car D:
[tex]P_4 = m v\\P_4 = (1000)(20)\\P_4 = 2\times 10^4 kg m/s[/tex]
Car E:
[tex]P_5 = m v\\P_5 = (4000)(5)\\P_5 = 2\times 10^4 kg m/s[/tex]
Car F:
[tex]P_6 = m v\\P_6 = (1000)(10)\\P_6 = 10^4 kg m/s[/tex]
So the momentum is given as ,
Car E = Car D > (Car F = Car B = Car C) > Car A
Part b)Impulse is given as change in momentum so here we can say that final momentum of all the cars will be zero as they all stops and hence the impulse is same as initial momentum of the car
so the order of impulse from largest to least is given as
Car E = Car D > (Car F = Car B = Car C) > Car A
One end of an insulated metal rod is maintained at 100c and the other end is maintained at 0.00 c by an ice–water mixture. The rod has a length of 75.0cm and a cross-sectional area of 1.25cm . The heat conducted by the rod melts a mass of 6.15g of ice in a time of 10.0 min .find the thermal conductivity k of the metal?k=............ W/(m.K)
Answer:
The thermal conductivity of the insulated metal rod is [tex]202.92\,\frac{W}{m\cdot K}[/tex].
Explanation:
This is a situation of one-dimensional thermal conduction of a metal rod in a temperature gradient. The heat transfer rate through the metal rod is calculated by this expression:
[tex]\dot Q = \frac{k_{rod}\cdot A_{c, rod}}{L_{rod}}\cdot \Delta T[/tex]
Where:
[tex]\dot Q[/tex] - Heat transfer due to conduction, measured in watts.
[tex]L_{rod}[/tex] - Length of the metal rod, measured in meters.
[tex]A_{c,rod}[/tex] - Cross section area of the metal rod, measured in meters.
[tex]k_{rod}[/tex] - Thermal conductivity, measured in [tex]\frac{W}{m\cdot K}[/tex].
Let assume that heat conducted to melt some ice was transfered at constant rate, so that definition of power can be translated as:
[tex]\dot Q = \frac{Q}{\Delta t}[/tex]
Where Q is the latent heat required to melt the ice, whose formula is:
[tex]Q = m_{ice}\cdot L_{f}[/tex]
Where:
[tex]m_{ice}[/tex] - Mass of ice, measured in kilograms.
[tex]L_{f}[/tex] - Latent heat of fussion, measured in joules per gram.
The latent heat of fussion of water is equal to [tex]330000\,\frac{J}{g}[/tex]. Hence, the total heat received by the ice is:
[tex]Q = (6.15\,g)\cdot \left(330\,\frac{J}{g} \right)[/tex]
[tex]Q = 2029.5\,J[/tex]
Now, the heat transfer rate is:
[tex]\dot Q = \frac{2029.5\,J}{(10\,min)\cdot \left(60\,\frac{s}{min} \right)}[/tex]
[tex]\dot Q = 3.382\,W[/tex]
Turning to the thermal conduction equation, thermal conductivity is cleared and computed after replacing remaining variables: ([tex]L_{rod} = 0.75\,m[/tex], [tex]A_{c,rod} = 1.25\times 10^{-4}\,m^{2}[/tex], [tex]\Delta T = 100\,K[/tex], [tex]\dot Q = 3.382\,W[/tex])
[tex]\dot Q = \frac{k_{rod}\cdot A_{c, rod}}{L_{rod}}\cdot \Delta T[/tex]
[tex]k_{rod} = \frac{\dot Q \cdot L_{rod}}{A_{c,rod}\cdot \Delta T}[/tex]
[tex]k_{rod} = \frac{(3.382\,W)\cdot (0.75\,m)}{(1.25\times 10^{-4}\,m^{2})\cdot (100\,K)}[/tex]
[tex]k_{rod} = 202.92\,\frac{W}{m\cdot K}[/tex]
The thermal conductivity of the insulated metal rod is [tex]202.92\,\frac{W}{m\cdot K}[/tex].
The International Space Station is about 90 meters across and about 380 kilometers away. One night t appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use serxa to figure out how far away Jupiter is in AU Note: 1 AU= 1.5 x 10-km
a) 6.0 x 10 Au
b) 4.0 AU
c) 9.1 x 1010 AU
d) 4.0 x 10 AU
Complete Question
The complete question is shown on the first uploaded image
Answer:
The distance is [tex]r_2 = 4 \ AU[/tex]
Explanation:
From the question we are told that
The size of Jupiter is [tex]s_2 = 143,000 \ km[/tex]
The length of the International Space Station is [tex]r_1 = 380\ km[/tex]
The size of the International Space Station is [tex]s_1 = 90 \ m =0.09 \ km[/tex]
The angular size where the same one night and this angular size is mathematically represented as
[tex]\theta = \frac{s}{r}[/tex]
Since [tex]\theta[/tex] is constant
[tex]\frac{s_1}{r_1} = \frac{s_2}{r_2}[/tex]
substituting values
[tex]\frac{0.09}{380} = \frac{143000}{r_2}[/tex]
=> [tex]r_2 = 6.04 * 10^{9} \ km[/tex]
Now we are told to convert to AU and 1 AU [tex]= 1.5 * 10^8 \ km[/tex]
So
[tex]r_2 = \frac{6.04 * 10^8}{1.5*10^{8}}[/tex]
[tex]r_2 = 4 \ AU[/tex]
Sara walks part way around a swimming pool. She walks 50 yards north, then
20 yards east, then 50 yards south. The magnitude of her total displacement
during this walk is
yards.
Answer:
20 Yards
Explanation:
|---20----|
| |
| 50 |50
|---D--->|
Start End
Total displacement(D) 20 yards (East).
an object's resistance to any change in motion is the_________ of the object.
An object's resistance to any change in motion is the Inertia of the object.
A) In the figure below, a cylinder is compressed by means of a wedge against an elastic constant spring = 12 /. If = 500 , determine what the minimum compression in the spring will be so that the pad does not move. Disregard the weight of the blocks and . The coefficient of friction between and the pad and between the floor and the pad is s = 0.4. Consider that the friction between the cylinder and the vertical walls is negligible
Answer: 4.08 cm.
B) Determine the lowest force required to lift the weight of 750 . The static coefficient of friction between and and between and is s= 0.25, and between and is 's = 0.5. Disregard the weight of the shims and .
Answer : 1095.4 N.
Explanation:
A) Draw free body diagrams of both blocks.
Force P is pushing right on block A, which will cause it to move right along the incline. Therefore, friction forces will oppose the motion and point to the left.
There are 5 forces acting on block A:
Applied force P pushing to the right,
Normal force N pushing up and left 10° from the vertical,
Friction force Nμ pushing down and left 10° from the horizontal,
Reaction force Fab pushing down,
and friction force Fab μ pushing left.
There are 2 forces acting on block B:
Reaction force Fab pushing up,
And elastic force kx pushing down.
(There are also horizontal forces on B, but I am ignoring them.)
Sum of forces on A in the x direction:
∑F = ma
P − N sin 10° − Nμ cos 10° − Fab μ = 0
Solve for N:
P − Fab μ = N sin 10° + Nμ cos 10°
P − Fab μ = N (sin 10° + μ cos 10°)
N = (P − Fab μ) / (sin 10° + μ cos 10°)
Sum of forces on A in the y direction:
N cos 10° − Nμ sin 10° − Fab = 0
Solve for N:
N cos 10° − Nμ sin 10° = Fab
N (cos 10° − μ sin 10°) = Fab
N = Fab / (cos 10° − μ sin 10°)
Set the expressions equal:
(P − Fab μ) / (sin 10° + μ cos 10°) = Fab / (cos 10° − μ sin 10°)
Cross multiply:
(P − Fab μ) (cos 10° − μ sin 10°) = Fab (sin 10° + μ cos 10°)
Distribute and solve for Fab:
P (cos 10° − μ sin 10°) − Fab (μ cos 10° − μ² sin 10°) = Fab (sin 10° + μ cos 10°)
P (cos 10° − μ sin 10°) = Fab (sin 10° + 2μ cos 10° − μ² sin 10°)
Fab = P (cos 10° − μ sin 10°) / (sin 10° + 2μ cos 10° − μ² sin 10°)
Sum of forces on B in the y direction:
∑F = ma
Fab − kx = 0
kx = Fab
x = Fab / k
x = P (cos 10° − μ sin 10°) / (k (sin 10° + 2μ cos 10° − μ² sin 10°))
Plug in values and solve.
x = 500 N (cos 10° − 0.4 sin 10°) / (12000 (sin 10° + 0.8 cos 10° − 0.16 sin 10°))
x = 0.0408 m
x = 4.08 cm
B) Draw free body diagrams of both blocks.
Force P is pushing block A to the right relative to the ground C, so friction force points to the left.
Block A moves right relative to block B, so friction force on A will point left. Block B moves left relative to block A, so friction force on B will point right (opposite and equal).
Block B moves up relative to the wall D, so friction force on B will point down.
There are 5 forces acting on block A:
Applied force P pushing to the right,
Normal force Fc pushing up,
Friction force Fc μ₁ pushing left,
Reaction force Fab pushing down and left 15° from the vertical,
and friction force Fab μ₂ pushing up and left 15° from the horizontal.
There are 5 forces acting on block B:
Weight force 750 n pushing down,
Normal force Fd pushing left,
Friction force Fd μ₁ pushing down,
Reaction force Fab pushing up and right 15° from the vertical,
and friction force Fab μ₂ pushing down and right 15° from the horizontal.
Sum of forces on B in the x direction:
∑F = ma
Fab μ₂ cos 15° + Fab sin 10° − Fd = 0
Fd = Fab μ₂ cos 15° + Fab sin 15°
Sum of forces on B in the y direction:
∑F = ma
-Fab μ₂ sin 15° + Fab cos 10° − 750 − Fd μ₁ = 0
Fd μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750
Substitute:
(Fab μ₂ cos 15° + Fab sin 15°) μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750
Fab μ₁ μ₂ cos 15° + Fab μ₁ sin 15° = -Fab μ₂ sin 15° + Fab cos 15° − 750
Fab (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°) = -750
Fab = -750 / (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°)
Sum of forces on A in the y direction:
∑F = ma
Fc + Fab μ₂ sin 15° − Fab cos 15° = 0
Fc = Fab cos 15° − Fab μ₂ sin 15°
Sum of forces on A in the x direction:
∑F = ma
P − Fab sin 15° − Fab μ₂ cos 15° − Fc μ₁ = 0
P = Fab sin 15° + Fab μ₂ cos 15° + Fc μ₁
Substitute:
P = Fab sin 15° + Fab μ₂ cos 15° + (Fab cos 15° − Fab μ₂ sin 15°) μ₁
P = Fab sin 15° + Fab μ₂ cos 15° + Fab μ₁ cos 15° − Fab μ₁ μ₂ sin 15°
P = Fab (sin 15° + (μ₁ + μ₂) cos 15° − μ₁ μ₂ sin 15°)
First, find Fab using the given values.
Fab = -750 / (0.25 × 0.5 cos 15° + 0.25 sin 15° + 0.5 sin 15° − cos 15°)
Fab = 1151.9 N
Now, find P.
P = 1151.9 N (sin 15° + (0.25 + 0.5) cos 15° − 0.25 × 0.5 sin 15°)
P = 1095.4 N
A conducting bar with mass m and length L slides over horizontal rails that are connected to a voltage source. The voltage source maintains a constant current I in the rails and bar, and a constant, uniform, vertical magnetic field B fills the region between the rails . Find the magnitude and direction of the net force on the conducting bar. Ignore friction, air resistance and electrical resistance :
A. v2m / ILB to yhe right
B. 3v2m /2 ILB to yhe left
C. 5v2m/ 2ILB to the right
D. v2m / 2ILB to the left
Answer:
F = ILB
Explanation:
To find the net force on the conducting bar you take into account the following expression:
[tex]\vec{F}=I( \vec{L}X \vec{B})[/tex]
I: current in the conducting bar
L: length of the bar
B: magnitude of the magnetic field
In this case the direction of the magnetic field and the motion of the bar are perpendicular between them. The direction of the bar is + i, and the magnetic field poits upward + k. The cross product of these vector give us the direction of the net force:
+i X +k = +j
The direction of the force is to the right and its magnitude is F = ILB
Which of the following statements is true of a gas?
It has a fixed volume, but not a fixed shape
It has closely packed molecules
It can change into a liquid by adding heat
It takes the shape and size of a container
Answer:
it takes the shape and size of the container that it is in
Explanation:
Answer:
it takes the shape and size of a container
A tank with a constant volume of 3.72 m3 contains 22.1 moles of a monatomic ideal gas. The gas is initially at a temperature of 300 K. An electric heater is used to transfer 4.5 × 104 J of energy into the gas. It may help you to recall that CV = 12.47 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.
a) What is the temperature of the gas after the energy is added?___K
b) What is the change in pressure of the gas?____Pa
c) How much work was done by the gas during this process?____J
Answer:
a) 463.29 K
b) 8065.65 Pa
c) 0 J
Explanation:
The parameters given are;
Volume of the tank, V = 3.72 m³
Number of moles of gas present in the tank, n = 22.1 moles
Temperature of the gas before heating, T₁ = 300 k
Heat added to the gas, ΔQ = 4.5 × 10⁴ J
Specific heat capacity at constant volume, [tex]c_v[/tex], for monatomic gas = 12.47 J/K/mole
Avogadro's number = 6.022 × 10²³ particles per mole
a) ΔQ = n × [tex]c_v[/tex] × ΔT
Where:
ΔT = T₂ - T₁
T₂ = Final temperature of the gas
Hence, by plugging in the values, we have;
4.5 × 10⁴ = 22.1 × 12.47 × (T₂ - 300)
[tex]T_{2} - 300 = \frac{4.5\times 10^{4}}{22.1\times 12.47}[/tex]
T₂ = 300 + 163.29 = 463.29 K
b) The pressure of the gas is found from the relation;
P×V = n×R×T
[tex]P = \dfrac{n \times R \times T}{V}[/tex]
Where:
P = Pressure of the gas
R = Universal gas constant = 8.3145 J/(mol·K)
T = Temperature of the gas
V = Volume of the gas = 3.72 ³ (constant)
n = Number of moles of gas present = 22.1 moles (constant)
Hence the change in pressure is given by the relation;
[tex]\Delta P = \dfrac{n \times R \times (T_2 - T_1)}{V} = \dfrac{n \times R \times \Delta T}{V}[/tex]
Plugging in the values, we have;
[tex]\Delta P = \dfrac{22.1 \times 8.3145 \times 163.29}{3.72} = 8065.65 \, Pa[/tex]
c) Work done, W, by the gas is given by the area under the pressure to volume graph which gives;
W = f(P) × ΔV
The volume given in the question is constant
∴ ΔV = 0
Hence, W = f(P) × 0 = 0 J
No work done by the gas during the process.
please help
Complete the first and second sentences, choosing the correct answer from the given ones.
1. A temperature of 100 K corresponds on a Celsius scale to 100 ° C / 0 ° C / 173 ° C / –173 ° C.
2. At 50 ° C, it corresponds to a Kelvin scale of 150 K / 323 K / 273 K / 223 K.
1) 100 ° C
2) 323 K
hope it helps youuuuuu
A skateboarder, starting from rest, rolls down a 12.8-m ramp. When she arrives at the bottom of the ramp her speed is 8.89 m/s. (a) Determine the magnitude of her acceleration, assumed to be constant. (b) If the ramp is inclined at 32.6 ° with respect to the ground, what is the component of her acceleration that is parallel to the ground?
Answer:
a) a = 3.09 m/s²
b) aₓ = 2.60 m/s²
Explanation:
a) The magnitude of her acceleration can be calculated using the following equation:
[tex] V_{f}^{2} = V_{0}^{2} + 2ad [/tex]
Where:
[tex]V_{f}[/tex]: is the final speed = 8.89 m/s
[tex]V_{0}[/tex]: is the initial speed = 0 (since she starts from rest)
a: is the acceleration
d: is the distance = 12.8 m
[tex] a = \frac{V_{f}^{2}}{2d} = \frac{(8.89 m/s)^{2}}{2*12.8 m} = 3.09 m/s^{2} [/tex]
Therefore, the magnitude of her acceleration is 3.09 m/s².
b) The component of her acceleration that is parallel to the ground is given by:
[tex] a_{x} = a*cos(\theta) [/tex]
Where:
θ: is the angle respect to the ground = 32.6 °
[tex] a_{x} = 3.09 m/s^{2}*cos(32.6) = 2.60 m/s^{2} [/tex]
Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².
I hope it helps you!
A skateboarder, starting from rest, rolls down a 12.8-m ramp the magnitude of the skateboarder's acceleration is approximately 3.07 [tex]m/s^2[/tex], the component of her acceleration that is parallel to the ground is approximately 1.66 [tex]m/s^2[/tex].
(a) The following kinematic equation can be used to calculate the skateboarder's acceleration:
[tex]v^2 = u^2 + 2as[/tex]
[tex](8.89)^2 = (0)^2 + 2a(12.8)[/tex]
78.72 = 25.6a
a = 78.72 / 25.6
a = 3.07 [tex]m/s^2[/tex]
(b) Trigonometry can be used to calculate the part of her acceleration that is parallel to the ground. We are aware that the ramp's angle with the ground is 32.6°.
[tex]a_{parallel }= a * sin(\theta)[/tex]
Plugging in the values:
[tex]a_{parallel[/tex] = 3.07 [tex]m/s^2[/tex]* sin(32.6°)
[tex]a_{parallel[/tex]≈ 1.66 [tex]m/s^2[/tex]
Therefore, the component of her acceleration that is parallel to the ground is approximately 1.66 [tex]m/s^2[/tex].
For more details regarding acceleration, visit:
https://brainly.com/question/2303856
#SPJ6
someone please help me with this thanks
In an RC-circuit, a resistance of R=1.0 "Giga Ohms" is connected to an air-filled circular-parallel-plate capacitor of diameter 12.0 mm with a separation distance of 1.0 mm. What is the time constant of the system?
Answer:
[tex]\tau = 1\ ms[/tex]
Explanation:
First we need to find the capacitance of the capacitor.
The capacitance is given by:
[tex]C = \epsilon_0 * area / distance[/tex]
Where [tex]\epsilon_0[/tex] is the air permittivity, which is approximately 8.85 * 10^(-12)
The radius is 12/2 = 6 mm = 0.006 m, so the area of the capacitor is:
[tex]Area = \pi * radius^{2}\\Area = \pi * 0.006^2\\Area = 113.1 * 10^{-6}\ m^2[/tex]
So the capacitance is:
[tex]C = \frac{8.85 * 10^{-12} * 113.1 * 10^{-6}}{0.001}[/tex]
[tex]C = 10^{-12}\ F = 1\ pF[/tex]
The time constant of a rc-circuit is given by:
[tex]\tau = RC[/tex]
So we have that:
[tex]\tau = 10^{9} * 10^{-12} = 10^{-3}\ s = 1\ ms[/tex]
What is the highest point at which weather will generally occur?
Answer:
At thestratosphere: it 20- 25km