Answer:
0.173 N.
Explanation:
We will calculate the mass and then use the following calculations on the surface of planet X that is :
[tex]W=mg[/tex]
We would use the following equation to get the value of g for planet X that is :
[tex]y_f-y_i=v_{yi}t+\frac{1}{2}gt^2[/tex]
Then, put the values in the above equation.
[tex]16=0+\frac{1}{2}\times g\times(2.90)^2[/tex]
[tex]\bf\mathit{g=3.80\;m/s^2}[/tex]
Now, we will measure the ball weight on planet X's surface:
[tex]m=\frac{100}{1000} \;\;\;\;\;\;\;\;\;\;[1kg=1000g][/tex]
Then, we have to put the value in the above equation.
[tex]W=0.1\times 1.73=0.173\:N[/tex]
A car moving in a straight line starts at X=0 at t=0. It passesthe point x=25.0 m with a speed of 11.0 m/s at t=3.0 s. It passes the point x=385 with a speed of 45.0 m/s at t=20.0 s. Find the average velocity and the average acceleration between t=3.0 s and 20.0 s.
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
At an intersection of hospital hallways, a convex spherical mirror is mounted high on a wall to help people avoid collisions. The magnitude of the mirror's radius of curvature is 0.560 m.
A) Locate the image of a patient10.6m from the mirror. B) Indicate whether the image is upright or inverted.C) Determine the magnification of the image.
Answer:
Explanation:
For a convex mirror, the value of its image distance and its focal length are negative.
using the mirror formula 1/f = 1/u+1/v
f is the focal length = Radius of curvature/2 = 0.560/2
f= 0.28m
u is the object distance = 10.6m
v is the position of the image = ?
On substitution;
1/0.28 = 1/10.6 + 1/-v
3.57 = 0.094 - 1/v
3.57 - 0.094 = -1/v
3.476 = -1/v
v = -1/3.476
v = -0.2877m
B) Since the image distance is negative, this means that the image is an upright and a virtual image. All Upright images has their image distance to be negative.
C) Magnification = Image distance/object distance
Magnification = 0.2877/10.6
Magnification = 0.0271
A sphere of diameter 6.0cm is moulded into a thin uniform wire of diameter 0.2mm. Calculate the length of the wire in metres (Take π = 22/7) *
Answer:
2025m
Explanation:
Since all materials of the sphere is made to a cylindrical wire, it implies the volume of the sphere material is same as that of the cylinder. This is expressed mathematically thus.
Volume of Sphere= volume of cylinder
4/3 ×π×R^3= π× r2× L
4/3 ×R^3= r^2×L
Hence
L = 3/4 × R^3/ r^2
But R = 6.0/2 = 3.0cm{ Diameter is twice raduis}
r= 0.2/2 = 0.1mm=>0.01cm{ Diameter is twice raduis and unit converted by dividing by 10 since 10mm = 1cm}
Substituting R and r into the expression for L, we have :
L = 3/4 × 3^3/ 0.01^2= 0.75 ×27/0.0001 = 202500cm
202500/100= 2025m{ we divide by 100 because 100cm=1m}
Having aced your Physics 2111 class, you get a sweet summer-job working in the International Space Station. Your room-mate, Cosmonaut Valdimir tosses a banana at you at a speed of 16 m/s. At exactly the same instant, you fling a scoop of ice cream at Valdimir along exactly the same path. The collision between banana and ice cream produces a banana split 8.2 m from your location 1.4 s after the banana and ice cream were launched.
1. How fast did you toss the ice cream?
2. How far were you from Valdimir when you tossed the ice cream?
Answer:
a
The speed is [tex]s = 5.857 m/s[/tex]
b
The distance is [tex]D = 22.4 \ m[/tex]
Explanation:
From the question we are told that
The speed of the banana is [tex]v = 16 \ m/s[/tex]
The distance from my location is [tex]d = 8.2 \ m[/tex]
The time taken is [tex]t = 1.4 \ s[/tex]
The speed of the ice cream is
[tex]s = \frac{d}{t}[/tex]
substituting values
[tex]s = \frac{8.4}{1.4}[/tex]
[tex]s = 5.857 m/s[/tex]
The distance of separation between i and Valdimir is the same as the distance covered by the banana
So
[tex]D = v * t[/tex]
substituting values
[tex]D = 16 * 1.4[/tex]
[tex]D = 22.4 \ m[/tex]
A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across from a tree on the opposite bank, the surveyor walks distance, D = 130 m along the river to establish a baseline. She then sights across to the tree and reads that the angle from the baseline to the tree is an angle θ = 25°. How wide is the river?
Answer:
The width of the river is [tex]z = 60.62 \ m[/tex]
Explanation:
From the question we are told that
The distance of the base line is D = 130 m
The angle is [tex]\theta = 25^o[/tex]
A diagram illustration the question is shown on the first uploaded image
Applying Trigonometric Rules for Right-angled Triangle,
[tex]tan 25 = \frac{z}{130}[/tex]
Now making z the subject
[tex]z = 130 * tan (25)[/tex]
[tex]z = 60.62 \ m[/tex]
A uniform disk with a 25 cm radius swings without friction about a nail through the rim. If it is released from rest from a position with the center level with the nail, then what is its angular velocity as it swings through the point where the center is below the na
Answer:
Explanation:
During the swing , the center of mass will go down due to which disc will lose potential energy which will be converted into rotational kinetic energy
mgh = 1/2 I ω² where m is mass of the disc , h is height by which c.m goes down which will be equal to radius of disc , I is moment of inertia of disc about the nail at rim , ω is angular velocity .
mgr = 1/2 x ( 1/2 m r²+ mr²) x ω²
gr = 1/2 x 1/2 r² x ω² + 1/2r² x ω²
g = 1 / 4 x ω² r + 1 / 2 x ω² r
g = 3 x ω² r/ 4
ω² = 4g /3 r
= 4 x 9.8 / 3 x .25
= 52.26
ω = 7.23 rad / s .
If a light is moved twice (2x) as far from a surface, the area the light covers is ___ as big.
- 2x
- 1/4
- 1/2
- 4x
Answer:
The correct option is;
- 4x
Explanation:
From the inverse square law, as the distance from the source of a physical quantity increases, the intensity of the source is spread over an area proportional to the square of the distance of the object from the source
The inverse square law can be presented as follows;
[tex]I = \dfrac{S}{4\times \pi \times r^2 }[/tex]
As the distance, r, increases, the surface it covers also increases by the power of 2
Therefore, where the distance increases from r to 2·r, we have;
When, I, remain constant
[tex]I = \dfrac{4\times S}{4\times \pi \times (2\cdot r)^2 } = I = \dfrac{4\times S}{4\times 4\times \pi \times r^2 } = \dfrac{S}{4\times \pi \times r^2 }[/tex]
The surface increases to 4·S by the inverse square law
Therefore, the correct option is 4 × x.
Two parallel, vertical, plane mirrors, 38.8 cm apart, face each other. A light source at point P is 30.1 cm from the mirror on the left and 8.7 cm from the mirror on the right.
(a) How many images of point P are formed by the mirrors?
(b) Find the distance from the mirror on the right to the two nearest images behind the mirror.
first nearest image=
second nearest image=
(c) Find the number of reflections of light rays for each of these images.
first nearest image=
second nearest image=
Answer:
Explanation shown below.
Explanation:
1.The number of images formed by 2 parallel mirrors is an infinite number of images.
2. The characteristics of a plane mirror is such that the object distance equals the image distance.
Hence the object distance is 8.7cm from the right; the image formed would be 8.7cm behind the mirror.
Now a second image is going to be formed by the left mirror which is going to have an image distance of 30.1cm behind the mirror.
Now this image would be reflected on the right side to form a new image which is going to be seen as 38.8 +30.1 = 68.9cm behind the right Mirror .
Hence the shortest distances are 8.7cm and 68.9cm
3. The number of reflections is infinite for both cases.
During last year’s diving competition, the divers always pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully extend their limbs to enter straight down as shown. Explain the effect of both actions on their angular velocities and kinetic energy (support your answer with working). Also explain the effect on their angular momentum.
Answer:
the angular speed of the person increases, being able to make more turns and faster.
K₂ = K₁ I₁ / I₂
Explanation:
When the divers are turning the system is isolated, so all the forces are internal and therefore also the torque, therefore the angular momentum is conserved
initial, joint when starting to turn
L₀ = I₁ w₁
final. When you shrink your arms and legs
Lf = I₂ w₂
L₀ = Lf
I₁ w₁ = I₂ w₂
when you shrink your arms and legs the distance to the turning point decreases and since the moment of inertia depends on the distance squared, the moment of inertia also decreases
I₂ <I₁
w₂ = I₁ / I₂ w₁
therefore the angular speed of the person increases, being able to make more turns and faster.
When it goes into the water it straightens the arm and leg, so the moment of inertia increases
I₁> I₂
w₁ = I₂ / I₁ w₂
therefore we see that the angular velocity decreases, therefore the person trains the water like a stone and can go deeper faster.
In both cases the kinetic energy is
K = ½ I w²
the initial kinetic energy is
K₁ = ½ I₁ w₁²
the final kinetic energy is
K₂ = ½ I₂ w₂²
we substitute
K₂ = ½ I₂ (I₁ / I₂ w1² 2
K₂ = ½ I₁² / I₂ w₁² = (½ I₁ w₁²) I₁ / I₂
K₂ = K₁ I₁ / I₂
therefore we see that the kinetic energy increases by factor I₁/I₂
Thana reminds Alston that because the electric field is uniform, a constant electric force is exerted on the electron. Alston recognizes that, in this case, they can use the kinematic equations to describe the motion of the charged particle while it is inside the region containing the electric field. He asks Thana to write down an equation they can use to calculate the acceleration of the particle while it is inside the region containing a uniform electric field. Which of These equations is correct?
Answer:
a = - e E / m
a = - 1,758 10¹¹ E
Explanation:
For this exercise we can use Newton's second law
F = m a
where the force is electric
the forces given by the product of the charge by the electric field
F = q E
in this case tell us that the charge is the charge of the electron
q = -e = - 1.6 10⁻¹⁹ C
we substitute
- e E = m a
a = - e E / m
we calculate
a = - 1.6 10⁻¹⁹ / 9.1 10⁻³¹ E
a = - 1,758 10¹¹ E
The negative sign indicates that the acceleration is in the opposite direction to the electric field
To get up on the roof, a person (mass 69.0 kg) places a 6.40 m aluminum ladder (mass 11.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes (in N) of the forces on the ladder at the top and bottom
Answer:
N = 243.596 N ≈ 243.6 N
Explanation:
mass of person = 69 kg ( M )
mass of aluminium ladder = 11 kg ( m )
length of ladder = 6.4 m ( l )
base of ladder = 2 m from the house (d )
center of mass of ladder = 2 m from the bottom of ladder
person on ladder standing = 3 m from bottom of ladder
Calculate the magnitudes of the forces at the top and bottom of the ladder
The net torque on the ladder = o ( since it is at equilibrium )
assuming: the weight of the person( mg) acting at a distance x along the ladder. the weight of the ladder ( mg) acting halfway along the ladder and the reaction N acting on top of the ladder
X = l/2
x = 6.4 / 2 = 3.2
find angle formed by the ladder
cos ∅ = d/l
∅ = [tex]cos^{-1][/tex] 2/6.4 = [tex]cos^{-1}[/tex]0.3125 ≈ 71.79⁰
remember the net torque around is = zero
to calculate the magnitude of forces on the ladder we apply the following formula
[tex]N = \frac{mg(dcosteta)+ Mgxcosteta}{lsinteta}[/tex]
m = 11 kg, M = 69 kg, l = 6.4 , x = 3, teta( ∅ )= 71.79⁰, g = 9.8
back to equation N = [tex]\frac{11*9.8(2*cos71.79)+ 69*9.8*3* cos71.79}{6.4sin71.79}[/tex]
N = (67.375 + 633.938) / 2.879
N = 243.596 N ≈ 243.6 N
A 2-kilogram toy car is traveling forward at 1 meter per second when it is hit in the rear by a 3-kilogram toy truck that was traveling at 3 meters per second just before impact. If the two toys stick together, their speed immediately after the collision is
Answer:
v = 1.4 m/s
Explanation:
This problem is about an inelastic collision. The total momentum before the collision is equal to total momentum after (because of the conservation of momentum law):
[tex]m_1v_1-m_2v_2=(m_1+m_2)v[/tex] (1)
m1: mass of the toy car = 2 kg
m2: mass of the toy truck = 3 kg
v1: speed of the toy car = 1 m/s
v2: speed of the truck car = 3 m/s
v: speed of both car and truck after the collision = ?
In the equation (1) the negative sign of m2v2 is because of the opposite direction of the toy truck respect to the toy car.
You solve the equation (1) for v, and you replace the values of all variables involved:
[tex]v=\frac{m_1v_1-m_2v_2}{m_1+m_2}\\\\v=\frac{(2kg)(1m/s)-(3kg)(3m/s)}{2kg+3kg}=-1.4\frac{m}{s}[/tex]
this velocity is negative, then, the direction of motion of both car and truck is in the direction of the truck
Hence, the speed of both car and truck toys is 1.4 m/s
Which of the following best describes the current age of the Sun?
A.) It is near the end of its lifespan.
B.) It is about halfway through its lifespan.
C.) It is early in its lifespan.
D.) We do not have a good understanding of the Sun's age.
Answer: Its b, The only problem with this is is there supposed to be a picture?
Explanation: NASA has used there fancy gadgets to figure this out but if there was a picture, this answer could be different.
If two twins (54 kg each) were 0.02 m apart, what is the force of gravity between them?
Answer:
Force, [tex]F=4.86\times 10^{-4}\ N[/tex]
Explanation:
We have,
Masses of two twins are 54 kg each
They are placed at a distance of 0.02 m
It is required to find the force of gravity between them. The formula used to find the gravitational force between masses is given by :
[tex]F=G\dfrac{m_1m_2}{r^2}[/tex]
plugging all the known values:
[tex]F=6.67\times 10^{-11}\times \dfrac{54^2}{(0.02)^2}\\\\F=4.86\times 10^{-4}\ N[/tex]
So, the force of gravity between them is [tex]4.86\times 10^{-4}\ N[/tex].
Water is traveling through a horizontal pipe with a speed of 1.7 m/s and at a pressure of 205 kPa. This pipe is reduced to a new pipe which has a diameter half that of the first section of pipe. Determine the speed and pressure of the water in the new, reduced in size pipe.
Answer:
The velocity is [tex]v_2 = 6.8 \ m/s[/tex]
The pressure is [tex]P_2 = 204978 Pa[/tex]
Explanation:
From the question we are told that
The speed at which water is travelling through is [tex]v = 1.7 \ m/s[/tex]
The pressure is [tex]P_1 = 205 k Pa = 205 *10^{3} \ Pa[/tex]
The diameter of the new pipe is [tex]d = \frac{D}{2}[/tex]
Where D is the diameter of first pipe
According to the principal of continuity we have that
[tex]A_1 v_1 = A_2 v_2[/tex]
Now [tex]A_1[/tex] is the area of the first pipe which is mathematically represented as
[tex]A_1 = \pi \frac{D^2}{4}[/tex]
and [tex]A_2[/tex] is the area of the second pipe which is mathematically represented as
[tex]A_2 = \pi \frac{d^2}{4}[/tex]
Recall [tex]d = \frac{D}{2}[/tex]
[tex]A_2 = \pi \frac{[ D^2]}{4 *4}[/tex]
[tex]A_2 = \frac{A_1}{4}[/tex]
So [tex]A_1 v_1 = \frac{A_1}{4} v_2[/tex]
substituting value
[tex]1.7 = \frac{1}{4} * v_2[/tex]
[tex]v_2 = 4 * 1.7[/tex]
[tex]v_2 = 6.8 \ m/s[/tex]
According to Bernoulli's equation we have that
[tex]P_1 + \rho \frac{v_1 ^2}{2} = P_2 + \rho \frac{v_2 ^2}{2}[/tex]
substituting values
[tex]205 *10^{3 }+ \frac{1.7 ^2}{2} = P_2 + \frac{6.8 ^2}{2}[/tex]
[tex]P_2 = 204978 Pa[/tex]
PLEASE HELP !
Complete the following sentence. Choose the right answer from the given ones. The internal energy of the body can be changed A / B / C. A. only when the body is warmed or cooled B. when work is done on the body or heat flow C. only when the body does work
B
HOPE IT HELPS LET ME KNOW IF U NEED EXPLANATION
A dimension is a physical nature of a quantity.
(i) give two (2) limitations of dimensional analysis..
(ii) if velocity (v), time (T) and force (F) were chosen as basic quantities, find the dimensions of mass?
Answer:
i) A dimension is the physical nature of a quantity. The two limitations of dimensional analysis is as following:
Dimesnional analysis is unable to derive relation when a physical quantity depends on more than three factors with dimensions. It is unable to derive a formula that contain exponential function, trigonometric function, and logarithmic function.ii) Given:
Velocity = v
Time = t
Force = F
Force = mass x acceleration
= mass x velocity/time
So, mass= (force x time) / velocity
[mass] = Ftv^-1
Hence, dimesnion of mass is Ftv^-1.
An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed
Complete Question
An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?
A It should stay the same
B It should be quadrupled.
C It should be quintupled
D It should be doubled.
E It should be tripled
Answer:
Option D is the correct option
Explanation:
Generally electric field is mathematically represented as
[tex]E = \frac{\sigma}{\epsilon_o}[/tex]
Where [tex]\sigma[/tex] is the charge per unit area (Charge density )
From the question we are told that [tex]\sigma[/tex] is doubled hence the
[tex]E = \frac{2 \sigma }{\epsilon_o}[/tex]
Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density
I really need help with this question someone plz help !
Answer:weight
Explanation:weight
Mr. Patel is photocopying lab sheets for his first period class. A particle of toner carrying a charge of 4.0 * 10^9 C in the copying machine experiences an electric field of 1.2 * 10^6 N/C as it’s pulled toward the paper. What is the electric force acting on the toner particle?
Answer:
4.8 × 10^15 N
Explanation:
Electric Field is defined as Force per unit Charge.
This is expressed mathematically as;
E= F/Q
Where E- Electric Field
F- Force
Q- charge
From the expression above by change of subject of formula for F, we have;
F=E×Q
= 1.2 * 10^6 ×4.0 * 10^9
= 4.8 × 10^15 N
An engine draws energy from a hot reservoir with a temperature of 1250 K and exhausts energy into a cold reservoir with a temperature of 322 K. Over the course of one hour, the engine absorbs 1.37 x 105 J from the hot reservoir and exhausts 7.4 x 104 J into the cold reservoir.
1) What is the power output of this engine?
2) What is the maximum (Carnot) efficiency of a heat engine running between these two reservoirs?
3) What is the actual efficiency of this engine?
Answer:
The power output of this engine is [tex]P = 17.5 W[/tex]
The the maximum (Carnot) efficiency is [tex]\eta_c = 0.7424[/tex]
The actual efficiency of this engine is [tex]\eta _a = 0.46[/tex]
Explanation:
From the question we are told that
The temperature of the hot reservoir is [tex]T_h = 1250 \ K[/tex]
The temperature of the cold reservoir is [tex]T_c = 322 \ K[/tex]
The energy absorbed from the hot reservoir is [tex]E_h = 1.37 *10^{5} \ J[/tex]
The energy exhausts into cold reservoir is [tex]E_c = 7.4 *10^{4} J[/tex]
The power output is mathematically represented as
[tex]P = \frac{W}{t}[/tex]
Where t is the time taken which we will assume to be 1 hour = 3600 s
W is the workdone which is mathematically represented as
[tex]W = E_h -E_c[/tex]
substituting values
[tex]W = 63000 J[/tex]
So
[tex]P = \frac{63000}{3600}[/tex]
[tex]P = 17.5 W[/tex]
The Carnot efficiency is mathematically represented as
[tex]\eta_c = 1 - \frac{T_c}{T_h}[/tex]
[tex]\eta_c = 1 - \frac{322}{1250}[/tex]
[tex]\eta_c = 0.7424[/tex]
The actual efficiency is mathematically represented as
[tex]\eta _a = \frac{W}{E_h}[/tex]
substituting values
[tex]\eta _a = \frac{63000}{1.37*10^{5}}[/tex]
[tex]\eta _a = 0.46[/tex]
Assume the three blocks (m. = 1.0 kg, m = 20 kg and m = 40 ko) portrayed in the figure below move on a frictionless surface and a force F: 36w acts as shown on the 4.0 kg block.
a) Determine the acceleration given this system (in m/s2 to the right). m/s2 (to the right)
b) Determine the tension in the cord connecting the 4.0 kg and the 1.0 kg blocks in N). Determine the force exerted by the 1.0 kg block on the 2.0 kg block (in N). N (a) What If How would your answers to parts (a) and (b) of this problem change if the 2.0 kg block was now stacked on top of the 1.0 kg block? Assume that the 2.0 kg block sticks to and does not slide on the 1.0 kg block when the system is accelerated.
(Enter the acceleration in m/s2 to the right and the tension in N.) acceleration m/s (to the right) tension
Answer:
a) 5.143 m/s^2
b) T = 15.43 N
c) Fr = 10.29 N
d) 5.143 m/s^2 , T = 15.43 N
Explanation:
Given:-
- The mass of left most block, m1 = 1.0 kg
- The mass of center block, m2 = 2.0 kg
- The mass of right most block, m3 = 4.0 kg
- A force that acts on the right most block, F = 36 N
Solution:-
a)
- For the first part we will consider the three blocks with masses ( m1 , m2 , and m3 ) as one system on which a force of F = 36 N is acted upon. The masses m1 and m3 are connected with a string with tension ( T ) and the m1 and m2 are in contact.
- We apply the Newton's second law of motion to the system with acceleration ( a ) and the combined mass ( M ) of the three blocks as follows:
[tex]F = M*a\\\\36 = ( 1 + 2 + 4 )*a\\\\a = \frac{36}{7}\\\\a = 5.143 \frac{m}{s^2}[/tex]
Answer: The system moves in the direction of external force ( F ) i.e to the right with an acceleration of 5.143 m/s^2
b)
- The blocks with mass ( m1 and m3 ) are connected with a string with tension ( T ) with a combined acceleration of ( a ).
- We will isolate the massive block ( m3 ) and notice that two opposing forces ( F and T ) act on the block.
- We will again apply the Newton's 2nd law of motion for the block m3 as follows:
[tex]F_n_e_t = m_3 * a\\\\F - T = m_3 * a\\\\36 - T = 4*5.143\\\\T = 36 - 20.5714\\\\T = 15.43 N[/tex]
Answer:- A tension of T = 15.43 Newtons acts on both blocks ( m1 and m3 )
c)
- We will now isolate the left most block ( m1 ) and draw a free body diagram. This block experiences two forces that is due to tension ( T ) and a reaction force ( Fr ) exerted by block ( m2 ) onto ( m3 ).
- Again we will apply the the Newton's 2nd law of motion for the block m3 as follows:
[tex]F_n_e_t = m_1*a\\\\T - F_r = m_1*a\\\\15.43 - F_r = 1*5.143\\\\F_r = 15.43 - 5.143\\\\F_r = 10.29 N[/tex]
- The reaction force ( Fr ) is contact between masses ( m1 and m2 ) exists as a pair of equal magnitude and opposite direction acting on both the masses. ( Newton's Third Law of motion )
Answer: The block m2 experiences a contact force of ( Fr = 10.29 N ) to the right.
d)
- If we were to stack the block ( m2 ) on-top of block ( m1 ) such that block ( m2 ) does not slip we the initial system would remain the same and move with the same acceleration calculated in part a) i.e 5.143 m/s^2
- We will check to see if the tension ( T ) differs or not as the two block ( m1 and m2 ) both experience the same Tension force ( T ) as a sub-system. with a combined mass of ( m1 + m2 ).
- We apply the Newton's 2nd law of motion for the block m3 as follows:
[tex]T = ( m_1 + m_2 ) *a\\\\T = ( 1 + 2 ) * 5.143\\\\T = 15.43 N[/tex]
Answer: The acceleration of the whole system remains the same at a = 5.143 m/s^2 and the tension T = 15.43 N also remains the same.
1. Calculate the centripetal force exerted on a 900kg900kg car that rounds a 600m600m radius curve on horizontal ground at 25.0m/s25.0m/s. 2. Static friction prevents the car from slipping. Find the magnitude of the frictional force between the tires and the road that allows the car to round the curve without sliding off in a straight line.
Explanation:
It is given that,
Mass of a car is 900 kg
Radius of curve is 600 m
Speed of the car in the curve is 25 m/s
We need to find the centripetal force exerted on a car. The formula used to find the centripetal force is given by :
[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{900\times (25)^2}{600}\\\\F=937.5\ N[/tex]
So, the centripetal force exerted on a car is 937.5 N.
Static friction prevents the car from slipping. It means that the magnitude of centripetal force is balanced by the frictional force. So, the frictional force of 937.5 N is acting on the car.
28 points!! please help
Someone plzzz helpppppp with this last question
Answer:
I dont know someone deleted answers. But they were wrong. INERTIA IS CORRECT I DID THIS IN MY SCHOOL
C IS CORRECT
two blocks with masses 2 kg and 4 kg are pushed from rest by the same amount of fore for a distance of 100 m on a frictionless floor. the final kinetic energy of the 2 kg block after the 100 m distance is
Answer:
the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J
Explanation:
mass of block A = 2 kg
mass of block B = 4 kg
distance the blocks were pushed = 100 m
NB: Blocks were pushed the same distance at the same equal time period. And the ground is without friction.
Work done in moving the 2 kg mass along the 100 m distance is,
work = force x distance moved
force exerted by the 2 kg mass = 2 x 9.81 m/s^2(acceleration due to gravity)
force = 19.62 N
therefore,
work done = 19.62 x 100 = 1962 Joules of work.
According to energy conservation principles, the kinetic energy impacted of the 2 kg mass through this distance will be equal to the work done in moving the 2 kg mass through this distance.
Therefore, the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J
A 1100 kg car pushes a 1800 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the car push against the ground with a force of 4500 N.A) What is the magnitude of the force of the car on the truck?B) What is the magnitude of the force of the truck on the car?
Answer:The answer is 3000 N.
Force (F) is the multiplication of mass (m) and acceleration (a).
F = m · a
It is given:
mc = 1000 kg
mt = 2000 kg
total force: F = 4500 N
total mass: m = mc + mt
Let's calculate acceleration which is common:
a = F/m = F/(mc + mt) = 4500/(1000 + 2000) = 4500/3000 = 1.5 m/s²
Now, when we know acceleration, let's calculate force on the truck:
Ft = mt · a = 2000 · 1.5 = 3000 N
Explanation:
An LC circuit has a 6.00 mH inductor. The current has its maximum value of 0.570 A at t =0s. A short time later the capacitor reaches its maximum potential difference of 66.0 V. What is the value of the capacitance?
Answer:
C = 44.75 x 10⁻⁸ F
Explanation:
Assuming no loss of energy between capacitor and inductor
energy in inductor initially = 1/2 Li₀² where L is inductance and i₀ is peak current .
= .5 x 6 x 10⁻³ x .57²
= .97 x 10⁻³ J .
This energy is transferred to capacitor .
energy of capacitor = 1/2 CV²
= .5 x C x 66²
= 2178 C
2178C = .97 x 10⁻³
C = 44.75 x 10⁻⁸ F .
The magnetic energy stored in the inductor is transformed into electrical energy stored in the capacitor. The value of capacitance for the given circuit is 44.75 x 10⁻⁸ F
Finding the capacitance:According to the law of conservation of energy, the magnetic energy stored in the inductor will be gradually lost and this energy will be stored in the capacitor as electrical energy.
Initially, the energy in the inductor is:
E = 1/2 Li₀²
where L is inductance
and i₀ is peak current.
E = 0.5 × 6 × 10⁻³ × (0.57)²
E = 0.97 × 10⁻³J
This energy is transformed into electrical energy stored in the capacitor.
So the capacitor energy is:
E = 1/2 CV²
where C is the capacitance
E = 0.5 × C × 66²
E = 2178 C
0.97 x 10⁻³ = 2178 C
C = 44.75 x 10⁻⁸ F
Learn more about capacitance:
https://brainly.com/question/12356566?referrer=searchResults
The inhabitants of a small island export a cloth made from a plant that grows only on their island. A clothier from New York, believing that he can save money by "cutting out the middleman," decides to travel to the island and buy the cloth himself. Ignorant of the local custom where strangers are offered outrageous prices initially, the clothier accepts (much to everyone's surprise) the initial price of 400 tepizes/m^2. The price of this cloth in New York is 120 dollars/yard^2. If the clothing maker bought 500 m^2 of this fabric, how much money did he lose? Use 1tepiz= 0.625dollar and 0.9144m = 1yard.
Answer:
Explanation:
purchase price = 400 tepizes / m²
1 tepiz = .625 dollar
purchase price in terms of dollar = 400 x .625 dollar / m²
= 250 dollar / m²
.9144 m = 1 yard
1 m = 1.0936 yard
1m² = 1.196 yard²
price in terms of dollar / yards²
= 250 / 1.196 dollar / yard²
= 209 dollar / yard²
Price of cloth in New York = 120 dollar / yard²
loss = 209 - 120 = 89 dollar / yard²
500 m² = 500 x 1.196 yard²
= 598 yard²
net loss in purchasing 500 m² cloth
= 598 x 89
= 53222 dollar .
A 0.150 kg lump of clay is dropped from a height of 1.45 m onto the floor. It sticks to the floor and does not bounce.
What is the magnitude of the impulse imparted to the clay by the floor during the impact? Assume that the acceleration due to gravity is =9.81 m/s2.
Answer:
J = 0.800 kg m/s
Fmax = 291 N
Explanation:
During the fall, energy is conserved.
PE = KE
mgh = ½ mv²
v = √(2gh)
v = √(2 × 9.81 m/s² × 1.45 m)
v = 5.33 m/s
Alternatively, you can use kinematics to find the velocity.
Impulse = change in momentum
J = Δp
J = mΔv
J = (0.150 kg) (5.33 m/s)
J = 0.800 kg m/s
Impulse = area under F vs t graph
J = ∫ F dt
J = ½ Fmax Δt
(0.800 kg m/s) = ½ Fmax (0.0055 ms)
Fmax = 291 N