Answer:
The difference is that water is an incompressible fluid — its density is almost constant as the pressure changes — while air is a compressible fluid — its density changes with pressure. ... Atmospheric pressure is the pressure exerted on a surface by the weight of the atmosphere (a compressible fluid) above it
Explanation:
change some words
what matches ????????????????
Answer:
1st: Radiation
2nd: Conduction
3rd: Convection
Explanation:
I actually learned this before in school. Yay
I’ll mark brainliest
When you look into your bathroom mirror, are you upside down
(inverted) or right side up (upright)?
Is this a real or virtual image?
Why?
What is the focal length of a bathroom (flat) mirror?
Answer:
When the image distance is positive, the image is on the same side of the mirror as the object, and it is real and inverted. When the image distance is negative, the image is behind the mirror, so the image is virtual and upright.
Explanation:
Which of the following describes half-life? Choose which apply.
A. Half-life is the amount of time it takes for half of a sample to decay.
B. The shorter the half-life, the more unstable the nuclide.
C. Half-life cannot be calculated for nuclides.
D. The longer the half-life, the more stable the nuclide
Answer:
дангггггггггггггггггггггггггггггггггггггггггггггг
Answer: D.
Explanation: I took the test
When you think of the word "respiration," you might think about the process of breathing, which is actually called ventilation. (The respiratory system consists of the windpipe, lungs, etc.) How is breathing related to cellular respiration?
Answer:
Breathing and cellular respiration are complementary processes that enable the body to produce energy by taken in oxygen which is required for the chemicals contained in food to be broken down there by producing, energy, water and carbon dioxide. The breathing and cellular respiration process also enables the removal of the produced carbon dioxide finally through nose and/or mouth
Explanation:
In cellular respiration, glucose molecules in the presence of oxygen gas are broken down into carbon dioxide and water aerobically in living cells, to release energy and produce ATP as follows;
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O
During breathing, oxygen is inhaled into the lungs from the atmosphere and carbon dioxide is exhaled from the longs into the atmosphere, such that the carbon dioxide produced during cellular respiration is transported out of the body through the veins respiratory system, from where is passes out through the nose, while oxygen used in cellular respiration comes from breathing in oxygen into the respiratory system
The oxygen is then transported to the cells through by blood in the blood vessels of the circulatory system to the cells, where the cells use the oxygen for cellular respiration to release energy.
A rope is used to pull a box 15.0 m across a floor. The rope is held at an angle of 46.0˚ and a force of 628 N is used along the rope. What is the work done? Your answer should be rounded to the tenths place, and include the correct units. View question
Answer:
6544.07 J
Explanation:
From the question given above, the following data were obtained:
Distance (d) = 15 m
Force (F) = 628 N
Angle (θ) = 46°
Workdone (Wd) =?
The work done can be obtained by using the following formula:
Wd = Fd × Cos θ
Wd = 628 × 15 × Cos 46
Wd = 9420 × 0.6947
Wd = 6544.07 J
Therefore, the workdone is 6544.07 J
Describe how seismic waves can be used to determine the location of petroleum far beneath the surface.
Answer: The seismic waves are useful for the oil and gas exploration beneath the earth crust.
Explanation:
The seismic waves are sent beneath the earth crust to determine the location of fossil fuels like petrol, and natural gas. These seismic waves bound back and their pattern of reflection and refraction is recorded by using a receiver that is a geophone or can be a hydrophone (in water). The seismic waves bounce back indicating towards the reservoir of fossil fuel exhibit a characteristic pattern that can help in tracing the location of the fossil fuel.
If the angle of incidence is 35 degree, what is the angle of reflection?
Answer:
35
Explanation:
angle of incidence equals angle of reflection
AM and FM stand for two different processes that are used to code voices and music for transmission. What does AM stand for? 1. Amplitude Modulation 2. Amplitude Mediation A
Answer:
1. Amplitude Modulation
Explanation:
AM is an acronym for Amplitude Modulation and it's refers to a process that is typically used for coding sounds such as voices and music for transmission from one point to another.
On the other hand, FM is an acronym for frequency modulation used for the propagation and transmission of sound waves.
Basically, the two forms of modulation are used for broadcasting in radio transmission.
Electromagnetic waves is a propagating medium used in all communications device to transmit data (messages) from the device of the sender to the device of the receiver.
Generally, the most commonly used electromagnetic wave technology in telecommunications is radio waves.
Radio waves can be defined as an electromagnetic wave that has its frequency ranging from 30 GHz to 300 GHz and its wavelength between 1mm and 3000m. Therefore, radio waves are a series of repetitive valleys and peaks that are typically characterized of having the longest wavelength in the electromagnetic spectrum.
What is so unusual about plutos orbit
It has the lowest eccentricity of any planets orbit
It has an unexpectedly short orbital period
Its orbit is titled by 17 degrees relative to the other eight planets
It's orbital period is exactly twice that of Neptune's
What do we call the Earth's magnetic field that extends outward from Earth in all
directions?
Answer:
Geomagnetic Field
Explanation:
Find the direction of the sum of
these two vectors:
Explain what does a calorimeter measure?
Measuring the heat of chemical reactions or physical changes.
Solved Exa
Example 1. An iron ball of mass 3 kg is
released from a height of 125 m and falls
freely to the ground. Assuming that the
value of g is 10 m/s2, calculate
(i) time taken by the ball to reach the
ground
(ii) velocity of the ball on reaching the
ground
(iii) the height of the ball at half the time it
takes to reach the ground.
According to the equations of motion, the time taken to reach the ground is 5 seconds.
Using;
s = ut + 1/2gt^2
s = distance
u = initial velocity
t = time taken
g = acceleration due to gravity
Note that u = 0 m/s since the object was dropped from a height
Substituting values;
125 = 1/2 × 10 × t^2
125 = 5t^2
t^2 = 125/5
t^2 = 25
t = 5 secs
Velocity on reaching the ground is obtained from
v = u + gt
Where u = 0 m/s
v = gt
v = 10 × 5
v = 50 m/s
At half the time it takes to reach the ground;
s = ut + 1/2gt^2
Where u = 0 m/s
s = 1/2gt^2
s = 1/2 × 10 × (2.5)^2
s = 31.25 m
Learn more about equation of motion: https://brainly.com/question/8898885
Answer:
(i) time taken by the ball to reach the
ground is 5 sec.
(ii) velocity of the ball on reaching the
ground is 50 m/s.
(iii) the height of the ball at half the time it
takes to reach the ground is 31.25 m.
Step-by-step explanation:
Solution :(i) time taken by the ball to reach the
ground
[tex]\longrightarrow{\sf{ \: \: s= ut + \dfrac{1}{2} a{(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: 125= 0 \times t + \dfrac{1}{2} \times 10 \times {(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: 125= 0 + \dfrac{10}{2} \times {(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: 125= 0 + 5\times {(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: 125= 5\times {(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {(t)}^2 = \dfrac{125}{5}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {(t)}^2 = \dfrac{ \cancel{125}}{\cancel{5}}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {(t)}^2 = 25}}[/tex]
[tex]\longrightarrow{\sf{ \: \: t = \sqrt{25} }}[/tex]
[tex]\longrightarrow \: \: {\sf{\underline{\underline{\red{ t = 5 \: sec}}}}}[/tex]
Hence, the ball taken 5 sec to reach the ground.
[tex]\begin{gathered}\end{gathered}[/tex]
(ii) velocity of the ball on reaching the
ground
[tex]\longrightarrow{\sf{ \: \: {v}^{2} - {u}^{2} = 2as}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {v}^{2} - {0}^{2} = 2 \times 10 \times 125}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {v}^{2} = 20 \times 125}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {v}^{2} = 2500}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {v} = \sqrt{2500} }}[/tex]
[tex]\longrightarrow{\sf{ \: \: \underline{\underline{ \red{{v} = 50 \: m/s }}}}}[/tex]
Hence, the velocity of ball is 50 m/s.
[tex]\begin{gathered}\end{gathered}[/tex]
(iii) the height of the ball at half the time it
takes to reach the ground.
[tex]\longrightarrow{\sf{ \: \: s= ut + \dfrac{1}{2} a{(t)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= 0 \times \dfrac{5}{2} + \dfrac{1}{2} \times 10 \times { \left( \dfrac{5}{2} \right)}^2}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= 0 + \dfrac{10}{2} \times { \left( \dfrac{5}{2} \times \dfrac{5}{2} \right)}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{10}{2} \times { \left( \dfrac{5 \times 5}{2 \times 2} \right)}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{10}{2} \times { \left( \dfrac{25}{4} \right)}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{10}{2} \times \dfrac{25}{4}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{10 \times 25}{2 \times 4}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{250}{8}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: s= \dfrac{\cancel{250}}{\cancel{8}}}}[/tex]
[tex]\longrightarrow{\sf{ \: \: {\underline{\underline{\red{s= 31.25 \: m}}}}}}[/tex]
Hence, the height of the ball to reach the ground is 31.25 m.
[tex]\underline{\rule{220pt}{3.5pt}}[/tex]
A 1036 nm film with an index of refraction n=2.62 is placed on the surface of glass n=1.52. Light (λ=520.0 nm) falls hits the perpendicular to the surface from air. You want to increase the thickness so the reflected light cancels. What is the minimum thickness of the film that you must add?
Answer:
[tex]55.64\ \text{nm}[/tex]
Explanation:
[tex]\lambda[/tex] = Wavelength falling on film = 520 nm
n = Refractive index of film = 2.62
T = Thickness of film
m = Order
We have the relation
[tex]2T=\dfrac{m\lambda}{n}\\\Rightarrow T=\dfrac{m\lambda}{2n}\\\Rightarrow T=\dfrac{m\times 520}{2\times 2.62}\\\Rightarrow T=99.24m[/tex]
The thickness should be greater than 1036 nm. This means [tex]m=11[/tex]
[tex]T=99.24\times 11=1091.64\ \text{nm}[/tex]
Thickness of the film to be added would be
[tex]\Delta T=1091.64-1036=55.64\ \text{nm}[/tex]
Thickness of the film to be added is [tex]55.64\ \text{nm}[/tex].
Answer:
Explanation:
The ray of light is passing from high refractive index medium to low refractive index medium so condition for cancellation of reflected light is as follows .
2μt = (2n+1) λ/2
where μ is refractive index of the medium , t is thickness , λ is wavelength of light and n is a integer .
Putting n = 10
2x 2.62 x t = 21 x 520 / 2 nm
5.24 t = 5460 nm
t = 1042 nm
Thickness required to be added
= 1042 - 1036 = 6 nm .
The energy used to move against the magnetic force is stored as (pick one: potential or kinetic)
Which describes an image that a concave mirror can make? Which describes an image that a concave mirror can make?
Answer: The image can be either virtual or real.
Answer:
the image can be rather real or virtual
Write the SI unit of time and temperature
Answer:
The SI unit of time is second (s) and temperature is Kelvin (K)
Explanation:
hope it is helpful to you
If 5.5% of 473.0 mL of vinegar is acetic acid, how many milliliters of acetic acid are there
Answer:
26.02 ml
Explanation:
0.055(473.0) = 26.02 ml
Two point charges of magnitude 5.0 nC and -3.0 nC are separated by
35.0 cm. What is the potential difference between a point infinitely far
away and a point midway between the charges?
Answer:
V = 411.43 V
Explanation:
The two forces as a result of each of the 2 charges are;
F1 = kq1•q/r
F2 = kq2.q/r
Where r = r/2 since we are dealing with potential difference at a point midway between the charges.
q1 = 5 nC = 5 × 10^(-9) C
q2 = 3 nC = 3 × 10^(-9) C
k = 9 × 10^(9) N.m²/C²
r = 35 cm = 0.35m
r/2 = 0.35/2
Thus;
F1 = (9 × 10^(9) × 5 × 10^(-9) × q)/(0.35/2)²
F1 = 1469.39q
F2 = (9 × 10^(9) × 3 × 10^(-9) × q)/(0.35/2)²
F2 = 881.63q
Net force acting midway is;
F_net = F1 + F2
F_net = 1469.39q + 881.63q
F_net = 2351.02q
Now, we know that formula for electric potential is;
V = kq/r
Thus ;
V = Fr/q derived from the earlier equation for force we used.
Where F is F_net.
V = 2351.02q × r/q
V = 2351.02r
Recall that we are dealing with midpoint and r = r/2
Thus;
V = 2351.02 × 0.35/2
V = 411.43 V
Twisting a bone along its longitudinal axis toward the midline of the body is ____________ .Twisting a bone along its longitudinal axis away from the midline of the body is ____________ .Rotation of the forearm, as if you're asking someone to hand you money or slap down on your hand, is called ____________ .Rotation of the forearm, as if you're turning over a can to empty it, is called ____________ .Movement of the thumb to approach and touch the fingertips is called ____________ .
Answer: Medial rotation
Lateral rotation
Supination
Pronation
Opposition
Explanation:
Medial rotation can be defined as the rotation of any of the body part towards the middle axis of the body. For example, movement of leg bones so that the toes are pointed towards inward.
Lateral rotation is the movement of the body parts or bones away from the middle axis of the body. For example. outward circle created by the upper limbs directed outwards.
Supination is the rotation of the forearm in such a way so that the palm is directed upwards so that hand can receive money or hand can slap a person.
Pronation is the downward motion of hand to put things down.
Opposition is the movement of the bones of the fingers the metacarpals which allow the thumb to touch the fingertips.
When the volume of the gas is reduced, what change in property would be the most reasonable to expect?
Answer:
Two possibities: Increase in pressure or decrease in temperature.
Explanation:
There are two possibilities under the assumption that mass of the gas is conserved and, consquently, the amount of moles is also conserved, a reduction in the volume of the gas leads to an increase in pressure (Boyle's Law) and a decrease in temperature (Gay-Lussac's Law)
The brick wall (of thermal conductivity
1.16 W/m ° C) of a building has dimensions
of 5 m by 7 m and is 18 cm thick.
How much heat flows through the wall in
a 17.2 h period when the average inside and
outside temperatures are, respectively, 24°C
and 8°C?
Answer in units of MJ.
Answer:223.46 MJ
Explanation:
Given
The thermal conductivity of brick wall is [tex]k=1.16\ W/m.^{\circ}C[/tex]
Cross-section of Wall [tex]A=5\m \times 7\ m[/tex]
time period [tex]t=17.2\ h=17.2\times 60\times 60=61,920\ s[/tex]
Inside temperature [tex]T_i=24^{\circ}C[/tex]
Outside temperature [tex]T_o=8^{\circ}C[/tex]
Heat transfer through the bricks
[tex]\dot{Q}=kA\dfrac{dT}{dx}[/tex]
[tex]\dot{Q}=1.16\times 35\times \dfrac{16}{0.18}\\\\\dot{Q}=3608.88\ W[/tex]
Heat flow for 17.2 h
[tex]Q=3608.88\times 61,920=223.46\ MJ[/tex]
How are wavelength, pitch, frequency, and energy all related?
Answer:
he word that musicians use for frequency is pitch. The shorter the wavelength, the higher the frequency, and the higher the pitch, of the sound. In other words, short waves sound high; long waves sound low. ... In other words, it sounds higher
Explanation:
PLEASEE HELP!!!!!!Why are the youth not getting involved in their communities and voting? How is media influencing the voters?
Answer:
because they are underaged and prob dont care and also the gov thinks that the youth cant make a reasonable decision for them selves for sum like that and the media influnces them to by saying whats going on and who supports who
Learning Goal: To understand the forces between a bar magnet and 1. a stationary charge, 2. a moving charge, and 3. a ferromagnetic object. A bar magnet oriented along the y axis can rotate about an axis parallel to the z axis. Its north pole initially points along j^.
Solution :
As the charge is stationary, hence
[tex]$F_m= qvB \sin \theta$[/tex]
[tex]$F_m=0$[/tex]
Hence, no torque at all.
When the charge is moving in positive x direction and the field will be in the negative y direction outside the bar, then :
[tex]$F = q(V \hat i \times B(- \hat j))$[/tex]
[tex]$= -qV B (\hat i \times \hat j)$[/tex]
[tex]$=qVB(- \hat k)$[/tex]
Hence, the force have direction [tex]$(- \hat k)$[/tex].
When instead of charge, an iron nail is used, then there will be induced magnetic field in the soft iron. The nature of the pole induced will be opposite near tot he bar. That is the north pole will be induced near the south pole and vice versa. That is why whichever be the pole of magnet closest to iron will be attracted by iron.
how many oxygen atoms are there in the products of this equation: C6H12O6+6O2 ➪6CO2+6H2O+energy?
can someone help me but please no links
Answer:
1. sand and water
2. suspension
mark me as brainliest plz
The ___ of a position time graph represents an objects velocity
Answer:
this one is for your egg drop question
first question -
Use this worksheet to design your device and record your data. You can then use this form to help you write your lab report.
Height of egg drop: _5ft._
__________________________________________________________
Q2:
Ideas for Prototype Design
Teepee, large cube , small cube
__________________________________________________________
Q3:
Preliminary Sketches (attach separate paper if needed)
Option A: teepee
__________________________________________________________
Q4:
Advantages: Disadvantages:
● fully covered ● egg might crack
● could stand higher distances ●egg will most likely bounce around around but not crack but most likely to crack
__________________________________________________________
Q5:
Option B: large cube
Option C: smaller cube
__________________________________________________________
Q6:
more advantages and disadvantages
Advantages: Disadvantages:
● egg will be tightly secured so nothing bounces around
● egg might crack depending on the impact to the floor
__________________________________________________________
Q7:
Which of the three designs will you move forward with? Explain your reasoning for selecting this design.
I think i'm going to be moving forward with the teepee design
__________________________________________________________
Q8:
Building the Prototype
What modifications, if any, did you make to the basic design during the construction process?
I made it a little smaller than the original design
__________________________________________________________
Q9:
Predictions
Will your device cushion the egg? How will your device do this?
I think it will cushion the design if i put the plastic bag in with the egg it should prevent it from moving around to much
__________________________________________________________
Q10:
Will your device increase the time it takes for the egg to impact the ground? How will your device do this?
I think the extra weight added to the design might affect it by speeding up the process down to the floor
__________________________________________________________
Q11:
Observations
Record your observations and the results of the experimental tests of your device below.
First i tried the egg without the plastic bag and it cracked so i made the design smaller and added the plastic bag this time
__________________________________________________________
Q12:
Evaluating Your Prototype
What worked well? I would say definitely the plastic bag keeping the egg in place
__________________________________________________________
Q13:
Which features can be improved upon? The structure itself as in where the string and tape were
__________________________________________________________
Q14:
Suggestions
How could the design of this device be improved? More balance i guess because the egg would move alot without the bag
__________________________________________________________
Q15:
Why would this change be an improvement? What force or momentum principle is this improvement based on? If the egg had more balance then it would have a less chance of cracking i think this is a type of impulse toward the ground bc of the egg’s weight
__________________________________________________________
Q16:
Sketch of Final Design
Draw a well-labeled sketch of the final design.
( i provided it :) )
okie peace!
Answer
slope
Explanation:
PLZZZZZ HELP MEHH ASAP!!!
Answer:
C
Explanation:
Copper is a conductor because its valence electrons can move freely from atom to atom.
How does the frequency of infrared electromagnetic waves compare with the frequency of radio and microwaves?
A. The frequency of infrared is higher than radio and microwaves
B. The frequency of infared is lower than radio and microwaves.
C. The frequency of infared is the same as radio and microwaves.
Answer:
Answer is B.
Because the wavelength of infrared is shorter than microwave radiation