Julie throws a ball to her friend Sarah. The ball leaves Julie's hand a distance 1.5 meters above the ground with an initial speed of 16 m/s at an angle 32 degrees; with respect to the horizontal. Sarah catches the ball 1.5 meters above the ground.
1) What is the horizontal component of the ball’s velocity when it leaves Julie's hand?
2) What is the vertical component of the ball’s velocity when it leaves Julie's hand?
3) What is the maximum height the ball goes above the ground?
4) What is the distance between the two girls?
5) How high above the ground will the ball be when it gets to Julie? (note, the ball may go over Julie's head.)

Answers

Answer 1

Answer:

Explanation:

1.  [tex]V_{x}[/tex] = [tex]V_{0}[/tex] * cos[tex]\alpha[/tex] ⇒ 16*cos32 ≈ 13.6 m/s (13.56)

2. [tex]V_{y}[/tex] = [tex]V_{0}[/tex] * sin[tex]\alpha[/tex] ⇒ 16* sin32 ≈ 9.4 m/s

3. [tex]y_{max}[/tex] = [tex]\frac{v_{0}^2*sin^2\alpha}{2g}[/tex]= [tex]\frac{16^2*sin^232}{2*9.8}[/tex] (the g (gravity) depends on the country but i'll take the average g which is 9.2m/s^2)

[tex]y_{max}[/tex] ≈ 3.6677+1.5 ≈ 5.2m

4.  [tex]x_{max}[/tex] = [tex]\frac{v_{0}^2*sin(2\alpha)}{g}[/tex]=[tex]\frac{16^2*sin(2*32)}{9.8}[/tex] ≈ 23.5m (23.47)

5. -

answer 4 could be wrong, not certain about that one and i don't know 5


Related Questions

What is the resistance of a circuit with a voltage of 10 V in a current of 5 A use almond law to create the resistance

Answers

Answer:

Explanation:

Ohm's law:

V = IR

10 V = (5 A) R

R = 2 Ω

A truck has a bed that is 4.50 metres long,and 2.50 metres wide, and 1.50 metres high. What is maximum volume of sand can the truck carry within this dimensions?​

Answers

Answer:

since the bed is a cuboid, we find the volume by L×W×H

4.50 × 2.50 × 1.50 = 16.875m³

HOPE THIS HELPS

You drive in straight line at 20 m/s for 10 miles, then at 30m/s for an other 10 miles what is your average speed

Answers

Answer:

25 m/s

Explanation:

Data provided in the question

20 m/s for 10 minutes

And, the 30 m/s for another 10 minutes

Based on the above information, the average speed is

As we know that

[tex]Average\ speed = \frac{Total\ distance}{Total\ time}[/tex]

[tex]= \frac{20\times10\times60 + 30\times10\times60 }{20\times60}[/tex]

= 25 m/s

1 hour = 60 minutes

1 minute = 60 seconds

Hence, the average speed is 25 m/s

In the question,  there are miles is given but instead of this we use the minutes as we have to find out the average speed and time should not be in miles it should be in minutes, hour or seconds

Therefore we considered the same


What is the momentum of an 8kg bowling ball rolling at 2m/s

Answers

Answer:

16kg m/s

Explanation:

P=mv

8 times 2=16kg m/s

Answer:

The momentum of moving body is calculated by

p= mv

In this question m= 8kg

v= 2m/s

so p = 8*2 = 16 kg m/s.

"Mass in motion" can be used to describe momentum. Mass exists in all things. Therefore, if an object is moving, it has momentum—its mass is moving. There are two factors that determine an object's momentum level: how much and how quickly the objects are moving.

Mass and velocity are two variables that affect momentum. An object's momentum can be expressed mathematically as the product of its mass multiply by its velocity.

The equation above can be rewritten as p = m • v, where m is the mass and v is the velocity, since momentum is represented by the lower case p in physics. The equation demonstrates that an object's momentum is directly proportional to its mass and velocity.

The quantity momentum is a vector. A vector quantity is a quantity that is fully described by magnitude and direction, as was discussed in a previous unit. Information about the bowling ball's magnitude as well as its direction must be included in order to fully describe the momentum of a 5-kg ball traveling westward at 2 m/s. The ball has a momentum of 10 kg m/s.

Until information about the ball's direction is provided, the ball's momentum cannot be fully described. The direction of the ball's velocity and the direction of the momentum vector are identical. It was mentioned in a previous unit that the velocity vector moves in the same way that an object moves. The bowling ball's momentum can be fully described as 10 kg m/s westward if it is moving westward. The magnitude and direction of an object's momentum can be used to fully describe it as a vector quantity.

For more details about momentum check these:

brainly.com/question/12098941

#SPJ2

A certain metal with work function of Φ = 1.7 eV is illuminated in vacuum by 1.4 x 10-6 W of light with a wavelength of λ = 600 nm. 1)How many photons per second, N, are incident on the metal? N = photons per second Submit 2)What is KEmax, the maximum kinetic energy of the electron that is emitted from the metal? KEmax = eV

Answers

Answer:

1) n = 4.47*10^12 photons

2) K = 0.25 eV

Explanation:

This is a problem about the photoelectric effect.

1) In order to calculate the number of photons that impact the metal, you take into account the power of the light, which is given by:

[tex]P=\frac{E}{t}=1.4*10^{-6}\frac{J}{s}[/tex]     (1)

Furthermore you calculate the energy of a photon with a wavelength of 600nm, by using the following formula:

[tex]E_p=h\frac{c}{\lambda}[/tex]         (2)

c: speed of light = 3*10^8 m/s

h: Planck's constant = 6.626*10^-34 Js

λ: wavelength = 600*10^-9 m

You replace the values of the parameters in the equation (2):

[tex]E_p=(6.626*10^{-34}Js)\frac{3*10^8m/s}{600*10^{-9}m}=3.131*10^{-19}J[/tex]

Next, you calculate the quotient between the power of the light (equation (1)) and the energy of the photon:

[tex]n=\frac{P}{E_p}=\frac{1.4*10^{-6}J/s}{3.131*10^{-19}J}=4.47*10^{12}photons[/tex]

The number of photons is 4.47*10^12

2) The kinetic energy of the electrons emitted by the metal is given by the following formula:

[tex]K=E_p-\Phi[/tex]     (3)

Ep: energy of the photons

Φ: work function of the metal = 1.7 eV

You first convert the energy of the photons to eV:

[tex]E_p=3.131*10^{-19}J*\frac{6.242*10^{18}eV}{1J}=1.954eV[/tex]

You replace in the equation (3):

[tex]K=1.95eV-1.7eV=0.25eV[/tex]

The kinetic energy of the electrons emitted by the metal is 0.25 eV

(1). The Number of photons per second is,[tex]4.23*10^{12}[/tex]

(2). The maximum kinetic energy of the electron is 0.37eV.

(1). The power of light is given as,

            [tex]P=1.4*10^{-6}W[/tex]

    Energy is given as,

             [tex]E=\frac{hc}{\lambda} =\frac{6.626*10^{-34}*3*10^{8} }{600*10^{-9} } \\\\E=3.313*10^{-19} Joule\\\\E=\frac{3.313*10^{-19}}{1.6*10^{-19} }=2.07eV[/tex]

Number of photons per second is,

                    [tex]N=\frac{P}{E}=\frac{1.4*10^{-6} }{3.313*10^{-19} } =4.23*10^{12}[/tex]

(2). the maximum kinetic energy of the electron is,

              [tex]K.E=E-\phi[/tex]

Where [tex]\phi[/tex] is work function.

         [tex]K.E=2.07-1.7=0.37eV[/tex]

Learn more:

https://brainly.com/question/12337396

A meter stick hurtles through space at a speed of 0.95c relative to you, with its length perpendicular to the direction of motion. You measure its length to be equal to:_______
a. 0 m.
b. 0.05 m.
c. 0.95 m.
d. 1.00 m.
e. 1.05 m.

Answers

Answer:

d. 1.00 m

Explanation:

In 1905, Einstein proposed special theory of relativity of light.

This theory had a number of consequences or results. One of them is called "Length Contraction".

According to this consequence, whenever an object travels at a speed comparable to the speed of light, its length decreases.

But this decrease in length is only seen in the dimension, which is parallel to the direction of motion of the body. All other dimensions of the object remains same.

In the given situation, the length of meter stick is not parallel to the direction of motion, but it is perpendicular. Hence, the length of meter stick will be same as the length of meter stick at rest. Hence, the correct option will be:

d. 1.00 m

Which symbol is used to show vector quantities

Answers

Answer:  arrows

Explanation:

A vector quantity is usually represented by an arrow, with the direction of the vector being the direction in which the arrow points and the length of the arrow representing the vector's magnitude.

What is the vector quantity unit?

The meter is the only fundamental SI unit that is a vector. The rest are all scalars. Derived quantities might be scalar or vector, but all vector quantities require meters as part of their definition and measurement.

The term "vector quantities" refers to physical quantities whose magnitude and direction are well specified.

Arrows are used to depict vectors. An arrow has a direction and a magnitude (how long it is) (the direction in which it points).

To learn more about vector quantities refer to:

https://brainly.com/question/15516363

#SPJ2

Light bulb 1 operates with a filament temperature of 3000 K, whereas light bulb 2 has a filament temperature of 2000 K. Both filaments have the same emissivity, and both bulbs radiate the same power. Find the ratio A1/A2 of the filament areas of the bulbs.

Answers

Answer:

A₁/A₂ = 0.44

Explanation:

The emissive power of the bulb is given by the formula:

P = σεAT⁴

where,

P = Emissive Power

σ = Stefan-Boltzman constant

ε = Emissivity

A = Surface Area

T = Absolute Temperature of Surface

FOR BULB 1:

Since, emissivity and emissive power are constant.

Therefore,

P = σεA₁T₁⁴   ----------- equation 1

where,

A₁ = Surface Area of Bulb 1

T₁ = Temperature of Bulb 1 = 3000 k

FOR BULB 2:

Since, emissivity and emissive power are constant.

Therefore,

P = σεA₂T₂⁴   ----------- equation 2

where,

A₂ = Surface Area of Bulb 2

T₂ = Temperature of Bulb 1 = 2000 k

Dividing equation 1 by equation 2, we get:

P/P = σεA₁T₁⁴/σεA₂T₂⁴

1 = A₁(3000)²/A₂(2000)²

A₁/A₂ = (2000)²/(3000)²

A₁/A₂ = 0.44

A uniform rod of mass 2.30 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 5.30 kg is attached to one end and a second mass m2 = 3.50 kg is attached to the other end of the rod. Treat the two masses as point particles.
A) What is the moment of inertia of the system?B) If the rod rotates with an angular speed of 2.00 rad/s, how much kinetic energy does the system have?C) Now consider the rod to be of negligible mass. What is the moment of inertia of the rod and masses combined?D) If the rod is of negligible mass, what is the kinetic energy when the angular speed is 2.00 rad/s?

Answers

Answer:

Explanation:

Moment of inertia of the rod = 1/12 m L²

m is mass of the rod and L is its length

= 1/2 x 2.3 x 2 x 2

= 4.6 kg m²

Moment of inertia of masses attached with the rod

= m₁ d² + m₂ d²

m₁ and m₂ are masses attached , and d is their distance from the axis of rotation

= 5.3 x 1² + 3.5 x 1²

= 8.8 kg m²

Total moment of inertia = 13.4 kg m²

B )

Rotational kinetic energy = 1/2 I ω²

I is total moment of inertia and ω is angular velocity

= .5 x 13.4 x 2²

= 26.8 J .

C )

when mass of rod is negligible , moment of inertia will be due to masses only

Total moment of inertia of masses

= 8.8 kg m²

D )

kinetic energy of the system

= .5 x 8.8 x 2²

= 17.6 J .

(A) Total moment of inertia is 13.4 kgm²

(B) Total kinetic energy is 26.8J

(C) Moment of inertia is  8.8 kgm²
(D) Kinetic energy is 17.6J

Rotational motion:

(A) The moment of inertia of the rod is given by:

I = 1/12 mL²

where m is the mass of the rod

and L is the length

So,

I = (1/12) × 2.3 × 2²

I = 4.6 kgm²

Now, the moment of inertia of masses attached to the rod is given by:

I' = m₁ d² + m₂d²

where m₁ and m₂ are masses

and d is their distance from the axis of rotation

I' = 5.3 × 1² + 3.5 × 1²

I' = 8.8 kgm²

The total moment of inertia of the system is given by:

I(tot) = I + I'

I(tot) = 13.4 kgm²

(B) The rotational kinetic energy of an object with a moment of inertia I and angular velocity ω is given by:

KE = 1/2 I(tot)ω²

KE = 0.5 × 13.4 × 2²

KE = 26.8J

(C) If the mass of the rod is negligible, then the moment of inertia of the rod will be zero. So the total moment of inertia will be

I(tot) = I' = 8.8 kgm²

(D) the kinetic energy of the system when the mass of the rod is negligible and the angular speed is 2 rad/s is given by:

KE = 1/2 I'ω²

KE = 0.5 × 8.8 × 2²

KE = 17.6J

Learn more about rotational motion:

https://brainly.com/question/15120445?referrer=searchResults

1. An object with a mass of 15 kilograms is pushed by a force of 30 Newtons. How much does
it accelerate?

Answers

Answer: [tex]2m/s^2[/tex]

Explanation:

[tex]Formula: F=ma[/tex]

Where;

F = force

m = mass

a = acceleration

Solve for a;

[tex]a=\frac{F}{m}[/tex]

[tex]a=\frac{30N}{15kg}\\ a=2m/s^2[/tex]

Q) Considering the value of ideal gas constant in S.I. unit, find the volume of 35g O2 at 27°C and 72
cm Hg pressure. Later, if we keep this pressure constant, the r.m.s velocity of this oxygen molecules
become double at a certain temperature. Calculate the value of this temperature.

Answers

Answer:

V = 0.0283 m³ = 28300 cm³

T₂ = 1200 K

Explanation:

The volume of the gas can be determined by using General Gas Equation:

PV = nRT

where,

P = Pressure of Gas = (72 cm of Hg)(1333.2239 Pa/cm of Hg) = 95992.12 Pa

V = Volume of Gas = ?

n = no. of moles = mass/molar mass = (35 g)/(32 g/mol) = 1.09 mol

R = General Gas Constant = 8.314 J/ mol.k

T = Temperature of Gas = 27°C + 273 = 300 k

Therefore,

(95992.12 Pa)(V) = (1.09 mol)(8.314 J/mol.k)(300 k)

V = 2718.678 J/95992.12 Pa

V = 0.0283 m³ = 28300 cm³

The Kinetic Energy of gas molecule is given as:

K.E = (3/2)(KT)

Also,

K.E = (1/2)(mv²)

Comparing both equations, we get:

(3/2)(KT) = (1/2)(mv²)

v² = 3KT/m

v = √(3KT/m)

where,

v = r.m.s velocity

K = Boltzamn Constant

T = Absolute Temperature

m = mass of gas molecule

At T₁ = 300 K, v = v₁

v₁ = √(3K*300/m)

v₁ = √(900 K/m)

Now, for v₂ = 2v₁ (double r.m.s velocity), T₂ = ?

v₂ = 2v₁ = √(3KT₂/m)

using value of v₁:

2√(900 K/m) = √(3KT₂/m)

4(900) = 3 T₂

T₂ = 1200 K

Use the position function s(t) = -16t + v_0t + s_0 for free falling objects. A ball is thrown straight down from the top of a 600-foot building with an initial velocity of -30 feet per second. (a) Determine the position and velocity functions for the ball. (b) Determine the average velocity on the interval [1, 3]. (c) Find the instantaneous velocities when t=1 and t=3. (d) Find the time required for the ball to reach ground level. (e) Find the velocity of the ball at impact.

Answers

Answer:

a) v = -30 - 32 t ,  s (t) = 600 - 30 t -16 t² , b) v = -32 ft / s

c) v (1) = -62 ft / s,  v (3) = -126 ft / s , d) t = 7.13 s , e)  v = -258.16 ft / s

Explanation:

a) For this exercise they give us the function of the position of the ball

          s (t) = s (o) + v_o t - 16 t²

notice that you forgot to write the super index

indicate the initial position of the ball

        s (o) = 600 ft

also indicates initial speed

        v_o = - 30 ft / s

let's substitute in the equation

        s (t) = 600 - 30 t -16 t²

to find the speed we use

       v = ds / dt

       v = v_o - 32 t

       v = -30 - 32 t

b) To find the average speed, look for the speed at the beginning and end of the time interval

t = 1 s

     v (1) = -30 -32 1

     v (1) = - 62 ft / s

t = 3 s

     v (3) = -30 -32 3

     v (3) = -126 ft / s

the average speed is

    v = (v (3) -v (1)) / (3-1)

    v = (-126 +62) / 2

    v = -32 ft / s

c) instantaneous speeds, we already calculated them

    v (1) = -62 ft / s

    v (3) = -126 ft / s

d) the time to reach the ground

in this case s = 0

    0 = 600 - 30 t -16 t²

     t² + 1,875 t - 37.5 = 0

we solve the quadratic equation

     t = [-1,875 ±√ (1,875² + 4 37.5)] / 2

     t = [1,875 ± 12.39] / 2

     t₁ = 7.13 s

     t₂ = negative

Since the time must be positive, the correct answer is t = 7.13 s

e) the speed of the ball on reaching the ground

     v = -30 - 32 t

     v = -30 - 32 7.13

      v = -258.16 ft / s

A 1000-kg car is moving down the highway at 14m/s. What is the momentum?

Answers

Explanation:

Momentum = mass × velocity

p = mv

p = (1000 kg) (14 m/s)

p = 14000 kg m/s

The momentum of the car as it moves down the highway at the given speed is 14000-kg.m/s

Given the data in the question

Mass of the car; [tex]g = 1000kg[/tex]Velocity of the car; [tex]v = 14m/s[/tex]Momentum; [tex]p = ?[/tex]

Momentum is the product of the mass of a particle and its velocity.

Momentum = Mass × Velocity

[tex]P = m \ * \ v[/tex]

We substitute our given values into the equation

[tex]P = 1000kg \ * \ 14m/s\\\\P = 14000kg.m/s[/tex]

Therefore, the momentum of the car as it moves down the highway at the given speed is 14000-kg.m/s

Learn more; https://brainly.com/question/265061

A mass of 5.00 kg pulls down vertically on a string that is wound around a rod of radius 0.100 m and negligible moment of inertia. The rod is fixed in the center of a disk. The disk has mass 125 kg and radius 0.2 m. They turn freely about a fixed axis through the center. What is the angular acceleration of the rod, in radians/s 2

Answers

Answer:

0.981 rad/sec^2

Explanation:

mass that pulls on string = 5 kg

weight due to mass = 5 x 9.81 = 49.05 N

radius of rod = 0.1 m

torque produced by this force on the rod = force x radius

torque = 49.05 x 0.1 = 4.905 N-m

mass of disk = 125 kg

radius of disk = 0.2 m

moment of inertia of the disk I = m[tex]r^{2}[/tex]

I = 125 x [tex]0.2^{2}[/tex] = 5 kg-m^2

from the equation, T = Iα

where T is torque

I is moment of inertia

α is angular acceleration

imputing values,

4.905 = 5α

α = 4.905/5 = 0.981 rad/sec^2

In order to determine the coefficients of friction between rubber and various surfaces, a student uses a rubber eraser and an incline. In one experiment, the eraser begins to slip down the incline when the angle of inclination is 35.6° and then moves down the incline with constant speed when the angle is reduced to 30.8°. From these data, determine the coefficients of static and kinetic friction for this experiment.

Answers

Answer:

The coefficients of static and kinetic friction for this experiment are 0.716 and 0.596, respectively.

Explanation:

The Free Body Diagram associated with the experiment is presented as attachment included below.

Friction is a contact force that occurs as a reaction against any change in state of motion, which is fostered by gravity.

Normal force is another contact force that appears as a reaction to the component of weight perpendicular to the direction of motion. Let consider a framework of reference consisting in two orthogonal axes, one being parallel to the direction of motion (x-axis) and the other one normal to it (y-axis). Equations of motion are described herein:

[tex]\Sigma F_{x} = W \cdot \sin \theta - f = 0[/tex]

[tex]\Sigma F_{y} = N - W \cdot \cos \theta = 0[/tex]

Where:

[tex]W[/tex] - Weight of the eraser, measured in newtons.

[tex]f[/tex] - Friction force, measured in newtons.

[tex]N[/tex] - Normal force, measured in newtons.

[tex]\theta[/tex] - Angle of the incline, measured in degrees.

The maximum allowable static friction force is:

[tex]f = \mu_{s} \cdot N[/tex]

Where:

[tex]\mu_{s}[/tex] - Coefficient of static friction, dimensionless.

[tex]N[/tex] - Normal force, measured in newtons.

Likewise, the kinetic friction force is described by the following model:

[tex]f = \mu_{k} \cdot N[/tex]

Where:

[tex]\mu_{k}[/tex] - Coefficient of static friction, dimensionless.

[tex]N[/tex] - Normal force, measured in newtons.

And weight is equal to the product of the mass of eraser and gravitational constant ([tex]g = 9.807\,\frac{m}{s^{2}}[/tex])

In this exercise, coefficients of static and kinetic friction must be determined. First equation of equilibrium has to be expanded and coefficient of friction cleared:

[tex]m\cdot g \cdot \sin \theta - \mu\cdot N = 0[/tex]

[tex]\mu = \frac{m\cdot g \cdot \sin \theta}{N}[/tex]

But [tex]N = m\cdot g \cos \theta[/tex], so that:

[tex]\mu = \tan \theta[/tex]

Now, coefficients of static and kinetic friction are, respectively:

[tex]\mu_{s} = \tan 35.6^{\circ}[/tex]

[tex]\mu_{s} \approx 0.716[/tex]

[tex]\mu_{k} \approx \tan 30.8^{\circ}[/tex]

[tex]\mu_{k} \approx 0.596[/tex]

The coefficients of static and kinetic friction for this experiment are 0.716 and 0.596, respectively.

g A proton is held at rest in a uniform electric field. When it is released, the proton will lose... electrical potential energy. kinetic energy. both kinetic energy and electric potential energy. neither kinetic energy or electric potential energy.

Answers

Answer:

It will lose electrical potential energy.

Explanation:

A photon held at rest in a uniform electrical field will lose electrical potential energy when it is released this is because the electrical potential energy is the energy posses by the photon at rest or by virtue of the position is converted to kinetic energy which is energy posses by a body in motion.

Since the photon is released and set in motion , it now has kinetic energy and has lost the potential energy because it is set in motion.

A 1.0 m string with a 5 g stopper on the end is whirled in a vertical circle. The speed of the stopper is 8 m/s at the top of the circle. (A) What is the speed of the stopper at the bottom of the circle? (HINT: Use energy conservation principles!) (10.2 m/s) (B) What is the tension in the string when the stopper is at the top of the circle? (0.27 N) (C) What is the tension in the string when the stopper is at the bottom of the circle?

Answers

Answer:

Explanation:

A )

At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy

1/2 m V² = mg x 2r + 1/2 mv²

m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top

1/2  V² = g x 2r + 1/2 v²

 V² = g x 4r +  v²

 V² = 9.8 x 4 +  8²

V² = 103.2

V = 10.16 m/s

B )

If T be the tension at the top

Net downward force

= mg + T . This force provides centripetal force for the circular motion

mg +T = mv² / r

T =   mv²/r -mg

= m ( v²/r - g )

= .005 ( 8²/1 -g )

= .005 x 54.2

= .27 N .

C ) At the bottom

Net force = T  - mg , T is tension at the bottom , V is velocity at bottom

T-mg = mV²/r

T = m ( V²/r +g )

= .005 ( 10.16²/1 +9.8)

= .005 x 113

= .56 N .

Observe: Air pressure is equal to the weight of a column of air on a particular location. Airpressure is measured in millibars (mb). Note how the air pressure changes as you move StationB towards the center of the high-pressure system.
A. What do you notice?
B. Why do you think this is called a high-pressure system?

Answers

Answer:

a) When moving towards a high pressure center the pressure values ​​increase in the equipment

b) This area is called high prison since the weight of the atmosphere on top is maximum

Explanation:

A) A high atmospheric pressure system is an area where the pressure is increasing the maximum value is close to 107 Kpa, the other side as low pressure can have small values ​​85.5 kPa.

When moving towards a high pressure center the pressure values ​​increase in the equipment

B) This area is called high prison since the weight of the atmosphere on top is maximum

in general they are areas of good weather

Q) Suppose, you are in a sporting event. You notice that everyone stands up when it’s his turn,
creating a wave that moves through the crowd and they sit back down again after a while. This wave
move around the stadium without moving the people around it. Considering this situation, justify
your answer about nature of wave.

Answers

Answer:

The nature of the wave formed is a transverse  progressive wave.

Explanation:

A wave is a disturbance that travels through a material medium without permanent displacement of the particles of the medium. The two major types are: transverse and longitudinal.

A transverse wave is one in which the direction of vibration of the particles of the medium is perpendicular to the direction of propagation of the wave. Examples are: water wave, light wave etc. While a longitudinal wave is one in which the direction of vibrations of the particles of the medium is parallel with the direction of propagation of the wave, creating a region of rarefaction and compression. Examples are; sound wave, wave in a rope, wave in a slinky etc.

The cited wave formed in the given question is a transverse wave because each person stands and sits after some time to create a moving (progressive) wave without them moving from their positions.

Two identical charges,2.0m apart,exert forces of magnitude 4.0 N on each other.What is the value of either charge?

Answers

Answer:

[tex]\large \boxed{42\, \mu \text{C}}$[/tex]

Explanation:

The formula for the force exerted between two charges is

[tex]F=k \dfrac{ q_1q_2}{r^2}[/tex]

where k is the Coulomb constant.

The charges are identical, so we can write the formula as

[tex]F=k\dfrac{q^{2}}{r^2}[/tex]

[tex]\begin{array}{rcl}\text{4.0 N}& = & 8.988 \times 10^{9}\text{ N$\cdot$m$^{2}$C$^{-2}$} \times \dfrac{q^{2}}{\text{(2.0 m)}^{2}}\\\\4.0 & = & 2.25 \times 10^{9}\text{ C$^{-2}$} \times q^{2}\\\\q^{2} & = & \dfrac{4.0}{2.25 \times 10^{9}\text{ C$^{-2}$}}\\\\& = & 1.78 \times 10^{-9} \text{ C}^{2}\\q & = & 4.2 \times 10^{-5} \text{ C}\\& = & 42\, \mu \text{C}\\\end{array}\\\text{Each charge has a value of $\large \boxed{\mathbf{42\, \mu }\textbf{C}}$}[/tex]

An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. The direction of the electric field vector of this wave is:___________

Answers

Answer:

either +z direction or -z direction.

Explanation:

The direction of the electric field, in an electromagnetic wave always is perpendicular to the direction of the magnetic field and the direction of propagation of the wave.

You assume a system of coordinates with the negative x axis as the west direction, and the y axis as the up direction

In this case, the wave is propagating toward the west (- x direction), and the magnetic field vector points up (+ y direction), then, it is mandatory that the electric field vector points either +z direction or -z direction.

The potential (relative to infinity) at the midpoint of a square is 3.0 V when a point charge of Q is located at one of the corners of the square. What is the potential (relative to infinity) at the center when each of the other corners is also contains a point charge of Q

Answers

Answer:

12.0 V

Explanation:

Data :

Potential difference due to a single charge (+Q), E = 3.0 V

 

The Electric potential for the system of charges is given as:

[tex]E=\frac{1}{4\pi \epsilon_o}[\Sigma\frac{Q}{r}][/tex]

for single charge, E = 3.0 V = [tex]\frac{1}{4\pi \epsilon_o}[\frac{Q}{r}][/tex]  ->eq(1)

And for 4 charges:

[tex]E=\frac{1}{4\pi \epsilon_o}[4\frac{Q}{r}][/tex] -eq(2)

from eq(1) and (2) we have

E = 4 × 3.0 V = 12 V

Work out the velocity v at the end of a rollercoaster ride (0). (rearrange the equation for KE to make velocity v the subject)
KE=1/2mv^2

Answers

Explanation:

If the kinetic energy of an object is given and we need to find its velocity of motion, then we can find it by using the formula of kinetic energy as :

[tex]K=\dfrac{1}{2}mv^2[/tex]

m is mass of the object

We can rearrange the above equation such that,

[tex]v=\sqrt{\dfrac{2K}{m}}[/tex]

Hence, this is the velocity at the end of a rollercoaster ride.

In a Venn diagram, the separate circles contain characteristics unique to each compared and the intersection contains characteristics that are common to both items being compared. This Venn diagram compares the inner and outer planets. What belongs in the center section?
a. -Revolve around the Sun
-Rotate on an axis
-Generally have rings
b. -Revolve around the Sun
-Rotate on axis
-Generally have moons
c. -Rotate around the Sun
-Revolve on an axis
-Generally have moons
d. -Rotate around the Sun
-Revolve on an axis
-Generally have rings

Answers

Answer:

B. revolve around the sun

   rotate on an axis

   generally have moons

Explanation:

edge 2021

The air flowing over the top of the wing travels
in the same amount of time than the air
flowing beneath the wing.

Answers

Answer: Short Answer: NO ( In Most Cases)

Explanation:

If that were true then planes couldn't get off the ground to fly. The front of the wing is cutting/pushing the air. On the top of the wing the air moves faster and on the bottom it moves slower making a upward draft giving the object the ability to fly or glide.

A train locomotive is pulling two cars of the same mass behind it. Determine the ratio of the tension in the coupling (think of it as a cord) between the locomotive and the first car (FT1) to that between the first car and the second car (FT2), for any nonzero acceleration of the train

Answers

Answer:

The ratio is  [tex]\frac{F_{T1}}{F_{T2}} = 2[/tex]

Explanation:

The diagram for this question is shown on the first uploaded image

Here we are assume the acceleration of the train is a

which makes the acceleration of each car a

From the question we are told that

      Considering the second car

 The force causing it s movement  is mathematically represented as

       [tex]F_{T2} = ma[/tex]

 Considering the first car

 The force causing it s movement  is mathematically represented as

      [tex]F = F_{T1} -F_{T2} = ma[/tex]

=>   [tex]F_{T1} -ma = ma[/tex]

=>   [tex]F_{T1} = 2 ma[/tex]

=> [tex]\frac{F_{T1}}{ma} = 2[/tex]

=> [tex]\frac{F_{T1}}{F_{T2}} = 2[/tex]

A tuba may be treated like a tube closed at one end. If a tuba has a fundamental frequency of 40.4 Hz, determine the first three overtones. Use 343 m/s as the speed of sound in air.
If the speed of sound is 337 m/s, determine the length of an open tube (open at both ends) that has a fundamental frequency of 233 Hz and a first overtone frequency of 466 Hz.

Answers

Answer:

Explanation:

fundamental frequency at closed pipe = 40.4 Hz

overtones are odd harmonics in closed pipe

first three overtones are

3 x 40.4 , 5 x 40.4 , 7 x 40.4 Hz

= 121.2 Hz , 202 Hz , 282.8 Hz .

speed of sound given is 337 , fundamental frequency is 233 Hz

wavelength = velocity of sound / frequency

= 337 / 233

= 1.446 m

for fundamental note in open pipe

wavelength /2 = length of tube

length of tube = 1.446 / 2

= .723 m

= 72.30 cm .

first overtone will be two times the fundamental ie 466. In open pipe all the harmonics are found , ie both odd and even .

An electric point charge of Q = 22.5 nC is placed at the center of a cube with a side length of a = 16.3 cm. The cube in this question is only a mathematical object, it is not made out of any physical material. What is the electric flux through all six sides of the cube?

Answers

Answer:

The electric flux is  [tex]\phi = 2.5 *10^{3} \ Nm^2 \cdot C^{-1}[/tex]

Explanation:

From the question we are told that

  The magnitude of the electric point charge  [tex]q = 22.5 nC = 22.5 *10^{-9} \ C[/tex]

   The length of the one side of the cube is [tex]l = 16.3 \ cm = 0.163 \ m[/tex]

   The number of  sides is  [tex]N= 6[/tex]  

The electric flux according to Gauss law is mathematically evaluated as

          [tex]\phi = \frac{q}{\epsilon_o}[/tex]

Where [tex]\epsilon _ o[/tex] is the permitivity of free space with value  [tex]\epsilon_o = 8.85*10^{-12}\ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

  substituting values

        [tex]\phi = \frac{22.5 *10^{-9}}{8.85 *10^{-12}}[/tex]

         [tex]\phi = 2.5 *10^{3} \ Nm^2 \cdot C^{-1}[/tex]

         

Which symbol in a chemical equation separates the reactants from the products?

Answers

Answer:

the arrow symbol ⇒ in irreversible reactions and doble arrow symbol in reversible reactios⇔

Explanation:

i hope this will help you

arrow symbol
Explanation: The arrow symbol in a chemical equation separates the reactants from products

A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic field that produces on it an upward force exactly equal in magnitude to the wire's weight, causing the wire to "levitate."

Required:
a. What is the field's magnitude?
b. What is the field's direction?

Answers

Answer:

The classification of that same issue in question is characterized below.

Explanation:

The given values are:

Current, I = 50.0 A

Diameter, d = 0.10 cm

(a)...

As we know,

⇒  Magnetic force = Copper wire's weight

So,

⇒   [tex]B\times I\times L=M\times g[/tex]

On putting the estimated values, we get

⇒  [tex]B\times 50\times 1=7.037\times 10^{-3}\times 9.81[/tex]

⇒  [tex]50B=69.03297\times 10^{-3}[/tex]

⇒  [tex]B=1.38\times 10^{-3} \ T[/tex]

(b)...

As we know,

⇒  [tex]m=\delta\times L\times \frac{\pi \ d^2}{4}[/tex]

⇒      [tex]=8960\times 1\times \frac{\pi \ (0.001)^2}{4}[/tex]

⇒      [tex]=2240\times \pi \ 0.000001[/tex]

⇒      [tex]=7.037\times 10^{-3} \ kg[/tex]

Other Questions
Write a function named file_stats that takes one string parameter (in_file) that is the name of an existing text file. The function file_stats should calculate three statistics about in_file i.e. the number of lines it contains, the number of words and the number of characters, and print the three statistics on separate lines. For example, the following would be be correct input and output. (Hint: the number of characters may vary depending on what platform you are working.)>>> file_stats('created_equal.txt')lines 2words 13characters 72 -560.114 a rational or irrational Prayerful journeys are a part of whichreligion?B. BuddhismA. JudaismD. all of the aboveC. Christianity Which is equivalent to 3v8 What is the coefficient of the 2nd term of the following expression when written in standard form:(7+4x)^3 what statement about the function are true? Write one scientific question about the organism in the photo. At Central High School, 55% of students play a school sport. Also, 24% of the student population is in ninth grade. To ninth graders are allowed to play school sports. If two students are selected at random to receive a gift card, what is the probability that one will go to a student athlete and one will go to a freshman? Write the answer as a percent rounded to the nearest tenth of a percent. A survey found that women's heights are normally distributed with mean 63.3 in. and standard deviation 2.7 in. The survey also found that men's heights are normally distributed with a mean 67.3 in. and standard deviation 2.8. Complete parts a through c below.a) most of the live characters at an amusement park have height requirements with a minimum of 4ft 9in and a maximum of 6ft 4in find the percentage of women meeting the height requirement the percentage of woment who meet the height requirement? (round to two decimal places as needed) b) find the percentage of men meeting the height requirement the percentage of men meeting the height requirement (round to two decimal places as needed ) c) If the height requirements are changed to exclude only the tallest 5% of men and the shortest 5% of women what are the new height requirements the new height requirements are at least ___ in. and at most ___ in. (round to one decimal place as needed) What is the purpose of the Federal Reserve System? to redistribute wealth equitably to establish and enforce tax laws to ensure the stability of the economic system to provide aid and welfare assistance to needy citizens What is the value of n in the equation: 8n+9= -n+5? Why is Clarisse happy at the end of the story? How can everyone be happy at the end of the story? What does the author's attitude toward adultery seem to be? Is there an overall "moral tone" to the story? For the function y = -2x + 4, the input is 3. What is the output? NOT SURE NEED HELP PLEASE Here is a rectangle ABCD the length of the rectangle is increased by 10% The width of the rectangle is increased by 5% Find the percentage increase in the perimeter of the rectangle What is the systematic name of the following compound?Mn3(PO4)2The polyatomic ion phosphate has the formula PO In the given triangle ABC, find DE. answers: 20 5 10 2.5 I do t o wish she sksnheisnmakakabs nsjd What is 5 2/3 divided by 3 1/9?? PLEASE HELP!!! D: Which concept did Thorsten Veblen come up with which refers to the outward display of consumption that demonstrates wealth and power through the wasting of resources and the symbols of upper-class membership