Which is the best description of the scientific theory

Answers

Answer 1

Explanation:

a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .


Related Questions

A rod of mass M = 2.95 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 45 g, moving with speed v = 4.23 m/s, strikes the rod at angle θ = 46° from the normal at a distance D = 2/3 L, where L = 0.95 m, from the point of rotation and sticks to the rod after the collision.

Required:
What is the angular speed ωf of the system immediately after the collision, in terms of system parameters and I?

Answers

Answer:

Explanation:

angular momentum of the putty about the point of rotation

= mvR   where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .

= .045 x 4.23 x 2/3 x .95 cos46

= .0837 units

moment of inertia of rod = ml² / 3 , m is mass of rod and l is length

= 2.95 x .95² / 3

I₁ = .8874 units

moment of inertia of rod + putty

I₁ + mr²

m is mass of putty and r is distance where it sticks

I₂  = .8874 + .045 x (2 x .95 / 3)²

I₂ = .905

Applying conservation of angular momentum

angular momentum of putty = final angular momentum of rod+ putty

.0837 = .905 ω

ω is final angular velocity of rod + putty

ω = .092 rad /s .

You have a suction cup that creates a circular region of low pressure with a 30 mm diameter. It holds the pressure to 85 % of atmospheric pressure. What "holding force" does the suction cup generate in N

Answers

Answer:

Force = 60.08 N

Explanation:

Given that

Diameter d = 30 mm  

Holding pressure = 85 %  of Atmospherics pressure

Solution

As we know that  here 1 atm = 10⁵ N/m²

and pressure is known as force per unit area

pressure = [tex]\frac{F}{A}[/tex]   ................1

put here value and we will get

F = [tex]0.85\times 10^5\times \frac{\pi}{4}\times 0.03^2\ N[/tex]

solve it we get

Force = 60.08 N

A silver rod having a length of 83.0 cm and a cross-sectional diameter of 2.40 cm is used to conduct heat from a reservoir at a temperature of 540 oC into an otherwise completely thermally insulated chamber that contains 1.43 kg of ice at 0 oC. How much time is required for the ice to melt completely

Answers

Answer:

3985 s or 66.42 mins

Explanation:

Given:-

- The length of the rod, L = 83.0 cm

- The cross sectional diameter of rod , d = 2.4 cm

- The temperature of reservoir, Tr = 540°C

- The amount of ice in chamber, m = 1.43 kg

- The temperature of ice, Ti = 0°C

- Thermal conductivity of silver, k = 406 W / m.K

- The latent heat of fusion of water, Lf = 3.33 * 10^5 J / kg

Find:-

How much time is required for the ice to melt completely

Solution:-

- We will first determine the amount of heat ( Q ) required to melt 1.43 kg of ice.

- The heat required would be used as latent heat for which we require the latent heat of fusion of ice ( Lf ). We will employ the first law of thermodynamics assuming no heat is lost from the chamber ( perfectly insulated ):

                              [tex]Q = m*L_f\\\\Q = ( 1.43 ) * ( 3.33 * 10 ^5 )\\\\Q = 476190 J[/tex]

- The heat is supplied from the hot reservoir at the temperature of 540°C by conduction through the silver rod.

- We will assume that the heat transfer through the silver rod is one dimensional i.e along the length ( L ) of the rod.

- We will employ the ( heat equation ) to determine the rate of heat transfer through the rod as follows:

                             [tex]\frac{dQ}{dt} = \frac{k.A.dT}{dx}[/tex]

Where,

                           A: the cross sectional area of the rod

                           dT: The temperature difference at the two ends of the rod

                           dx: The differential element along the length of rod ( 1 - D )

                           t: Time ( s )

- The integrated form of the heat equation is expressed as:

                            [tex]Q = \frac{k*A*( T_r - T_i)}{L}*t[/tex]

- Plug in the respective parameters in the equation above and solve for time ( t ):

                           [tex]476190 = \frac{406*\pi*0.024^2 * ( 540 - 0 ) }{0.83*4}*t \\\\t = \frac{476190}{119.49619} \\\\t = 3985 s = 66.42 mins[/tex]

Answer: It would take 66.42 minutes to completely melt the ice

An object is known to have a coefficient of kinetic friction (µk) of 0.167 and a coefficient of static friction (µk) of 0.42. If the normal force is 200 N, how much frictional force will it encounter while it is moving?

Answers

Answer:

Ff = 33.4N

Explanation:

To find the frictional force while the object is moving, you take into account that the friction force depends of the coefficient of kinetic friction.

The frictional force is given by:

[tex]F_f=\mu_kN[/tex]         (1)

Ff: frictional force = ?

µk: coefficient of kinetic friction = 0.167

N: normal force of the object = 200N

You replace the values of the parameters in the equation (1):

[tex]F_f=(0.167)(200N)=33.4N[/tex]

The frictional force, while the objects is moving, is 33.4N

A 2500 kg truck moving at 10.00 m/s strikes a car waiting at the light. Assume there is no friction on the road. The hook bumpers continue to move at 7.00 m/s. What is the mass of the struck car

Answers

M2=(M1Vi/Vf)-M1=[2500*(10/7)]-2500
M2=(3/7)*2500=1070kg

When an aluminum bar is connected between a hot reservoir at 860 K and a cold reservoir at 348 K, 2.40 kJ of energy is transferred by heat from the hot reservoir to the cold reservoir
(a) In this irreversible process, calculate the change in entropy of the hot reservoir.
_______ J/K
(b) In this irreversible process, calculate the change in entropy of the cold reservoir.
_______ J/K
(c) In this irreversible process, calculate the change in entropy of the Universe, neglecting any change in entropy of the aluminum rod.
_______ J/K
(d) Mathematically, why did the result for the Universe in part (c) have to be positive?

Answers

Answer:

a) [tex]\Delta S_{in} = 2.791\,\frac{J}{K}[/tex], b) [tex]\Delta S_{out} = 6.897\,\frac{J}{K}[/tex], c) [tex]S_{gen} = 4.106\,\frac{J}{K}[/tex], d) Due to irreversibilities due to temperature differences.

Explanation:

a) The change in entropy of the hot reservoir is:

[tex]\Delta S_{in} = \frac{2400\,J}{860\,K}[/tex]

[tex]\Delta S_{in} = 2.791\,\frac{J}{K}[/tex]

b) The change in entropy of the cold reservoir is:

[tex]\Delta S_{out} = \frac{2400\,J}{348\,K}[/tex]

[tex]\Delta S_{out} = 6.897\,\frac{J}{K}[/tex]

c) The total change in entropy of the Universe is modelled after the Second Law of Thermodynamics. Let assume that process is steady:

[tex]\Delta S_{in} - \Delta S_{out} + S_{gen} = 0[/tex]

[tex]S_{gen} = \Delta S_{out} - \Delta S_{in}[/tex]

[tex]S_{gen} = 6.897\,\frac{J}{K} - 2.791\,\frac{J}{K}[/tex]

[tex]S_{gen} = 4.106\,\frac{J}{K}[/tex]

d) Since irreversibilities create entropy as process goes by. The main source of irreversibilities is the existence of temperature differences.

URGENT : Which of the following is the most stable isotope? Explain.


Answers

Answer:

Plutonium–238

Explanation:

The stability of isotopes is largely dependent on their half-life.

Half life of an isotope is the time taken for the initial mass of the isotope to be halfed or we can say that the half-life of an isotope is the time taken for the mass of the isotope to become half the initial mass.

From the above definition, we discovered that if the time taken for the mass of the isotope to become half its initial mass is long, then the isotope must be very stable. On the other hand, if the time taken to become half its initial mass is short, then the isotope is unstable because.

We can thus say that, the longer the half-life the more stable the isotope and the shorter the half-life, the less stable the isotope will be.

Considering the table given in the question above and with the ideas we have obtained from the explanation above, we can see that Plutonium–238 has the longest half-life. Therefore Plutonium–238 will be more stable.

You are on a train traveling east at speed of 19 m/s with respect to the ground. 1)If you walk east toward the front of the train, with a speed of 1.5 m/s with respect to the train, what is your velocity with respect to the ground

Answers

Answer:

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

Explanation:

Relative velocity with respect to the ground is;

Vbg = velocity of train with respect to the ground + your velocity with respect to the train

Vbg = Vtg + Vbt ......1

Given;

velocity of train with respect to the ground;

Vtg = 19 m/s

your velocity with respect to the train;

Vbt = 1.5 m/s

Substituting the given values into the equation 1;

Vbg = 19 m/s + 1.5 m/s

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

Convert from scientific notation to standard form
9.512 x 10-8

Answers

Answer:

0.00000009512

Explanation:

Scientific notation is a very useful and abbreviated way of writing quantities that are very large or small. It consists of placing the number with an integer and multiplying by an exponent to arrive at the same number.

let's pass the number 9,512 10⁻⁸ to decimal notation

       9,512 / 10⁸ = 9,512 / 100000000

        0.00000009512

As we see writing this number, it is very easy to make mistakes

70 pointss yall !!! helpp

Answers

A: the type of plant

B: how tall the plant is

Answer:

A= The type of plant

B= How tall the plant is

Explanation:

write the answer:
physics ... i need help ​

Answers

Answer:

6 gallons

Explanation:

At 30 mph, the fuel mileage is 25 mpg.

After 5 hours, the distance traveled is:

30 mi/hr × 5 hr = 150 mi

The amount of gas used is:

150 mi × (1 gal / 25 mi) = 6 gal

Which nucleus completes the following equation?
Se+?
O A. Ga
B. P
C. 31P
D. CI

Answers

Answer:First option

Explanation:

hope it helped

A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A. her moment of inertia decreases and her angular speed decreases B. her moment of inertia decreases and her angular speed increases C. her moment of inertia increases and her angular speed decreases D. her moment of inertia increases and her angular speed decreases E. her moment of inertia increases and her angular speed remains the same.

Answers

Answer:

  C. her moment of inertia increases and her angular speed decreases

  D. her moment of inertia increases and her angular speed decreases

Explanation:

The moment of inertia of a body is the sum of the products of an increment of mass and the square of its distance from the center of rotation. When a spinning person extends her arms, part of her mass increases its distance from the center of rotation, so increases the moment of inertia.

The kinetic energy of a spinning body is jointly proportional to the moment of inertia and the square of the angular speed. Hence an increase in moment of inertia will result in a decrease in angular speed unless there is a change in the rotational kinetic energy.

This effect is used by figure skaters to increase their spin rate by drawing their arms and legs closer to the axis of rotation. Similarly, they can slow the spin by extending arms and legs.

When the person extends her arms, her moment of inertia increases and her angular speed decreases.

_____

Note to those looking for a letter answer

Both choices C and D have identical (correct) wording the way the problem is presented here. You will need to check carefully the wording in any problem you may think is similar.

A visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 6.01 s. What is the height of the tower

Answers

Answer:

The height of the tower is 8.96 m.

Explanation:

We have, a visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 6.01 s.

It is required to find the height of the tower. Let it is l. The time period of a simple pendulum is given by :

[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]

l is length of pendulum, or height of tower

[tex]l=\dfrac{T^2g}{4\pi^2}\\\\l=\dfrac{(6.01)^2\times 9.8}{4\pi^2}\\\\l=8.96\ m[/tex]

So, the height of the tower is 8.96 m.

02

Blue light has a frequency of about 7.5 x 1014 Hz. Calculate the energy, in Joules, of a single photon associated with this frequency

Answers

Answer:

49.725× 10^-24J

Explanation:

The Energy associated with a Photon us defined as;

E = hf

Where h is Planck's constant = 6.63× 10^-34m2kg/s

f is the frequency= 7.5 x 10^14 Hz

Hence

E = 6.63× 10^-34 × 7.5 x 10^14 =49.725× 10^-24J

Gas is contained in a piston-cylinder assembly and undergoes three processes. First, the gas is compressed at a constant pressure of 100 [kPa] from initial volume of 1.0 [m3] to a volume of 0.5 [m3]. Second, the gas pressure is increased by heating at constant volume up to 200 [kPa]. Third, the gas is returned to its initial pressure and volume by a process for which P ∀=constant. All pressures given are absolute. For the gas as a system, is the system best considered open, closed, or isolated? Why?

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The correct option is  B

Explanation:

The system is best considered a closed system because looking at process we can see that there was no exchange of matter between the system and the surrounding,(as the was no escape of matter from the system to the surrounding )

Secondly we can  deduce that there is  a variation in the volume. from [tex]1.0 m^3[/tex] to [tex]0.5 m^3[/tex]

   

Q.1- Find the distance travelled by a particle moving in a straight line with uniform acceleration, in the 10th unit of time.

Answers

Answer:

If the acceleration is constant, the movements equations are:

a(t) = A.

for the velocity we can integrate over time:

v(t) = A*t + v0

where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:

[tex]\int\limits^{10}_0 {A*t + v0} \, dt = ((A/2)10^2 + v0*10) = (A*50 + v0*10)[/tex]

Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.

The coefficient of kinetic friction between a suitcase and the floor is 0.272. You may want to review (Pages 196 - 203) . Part A If the suitcase has a mass of 80.0 kg , how far can it be pushed across the level floor with 660 J of work

Answers

Answer:

Explanation:

The work required to push will be equal to work done by friction . Let  d be the displacement required .

force of friction = mg x μ where m is mass of the suitcase , μ be the coefficient of friction

work done by force of friction

mg x μ x d   = 660

80 x 9.8 x .272 x d = 660

d = 3 .1 m .

Two spectators at a soccer game see, and a moment later hear, the ball being kicked on the playing field. The time delay for the spectator A is 0.55 s, and for the spectator B it is 0.45 s. Sight lines from the two spectators to the player kicking the ball meet at an angle of 90°. The speed of sound in the air is 343 m/s.
How far are (a) spectator A and (b) spectator B from the player?
(c) How far are the spectators from each other?

Answers

Answer:

a)188.65m

b)154.35m

c)243.7m

Explanation:

Given data:

[tex]t_A=0.55s[/tex]

[tex]t_B=0.45s[/tex]

(a) The distance from the kicker to each of the 2 spectators is given by:

[tex]d_A=v \times t_A[/tex]

where,

v= speed of sound

[tex]t_A[/tex]=time taken for the sound waves to reach the ears

[tex]d_A=343\times 0.55=188.65[/tex]m

(b)[tex]d_B=v \times t_B[/tex]

where,

v= speed of sound

[tex]t_B[/tex]=time taken for the sound waves to reach the ears

[tex]d_B=343\times 0.45=154.35m[/tex]

(c)As the angle b/w slight lines  from the two spectators to the player is right angle,

hypotenuse=the distance b/w 2 spectators

and, the slight lines are the other 2 lines

[tex]D^2=d_A^2+d_B^2\\D=\sqrt{188.65^2+154.35^2} \\D= 243.7m[/tex]

student conducted an experiment and find the density of an ICEBERGE. A students than recorded the following readings. Mass 425 25   g Volume 405 15   mL What experimental value should be quoted for the density of the ICEBERG? Compare your answer with the density of water, which is 3 1.00 10  kg . Show any calculations necessary to justify your answer

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The experimental value of density is   [tex]\rho = 1.05*10^{3} \ kg/m^3 \pm 101 \ kg/m^3[/tex]

Comparing it with the value of density of water ([tex]1.0*10^{3} \ kg/m^3[/tex]) we can see that the density of ice is greater

Explanation:

From the question we are told

    The mass is [tex]M = (425 \pm 25) \ g =(0.425 \pm 0.025) \ kg[/tex]

   The volume is [tex]V = (405 \pm 15 ) \ mL = (0.000405 \pm 1.5*10^{-5}) \ m^3[/tex]

The experimental value of density is mathematically evaluated as

        [tex]\rho = \frac{M}{V}[/tex]

       [tex]\rho = \frac{0.425}{0.000405}[/tex]

       [tex]\rho = 1.05 *10^{3} \ kg/m^3[/tex]

The possible error in this experimental value of density is mathematically evaluated as

        [tex]\frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} +\frac{\Delta V}{V}[/tex]

substituting value

         [tex]\frac{\Delta \rho}{1.05*10^{3}} = \frac{0.025}{0.425} +\frac{1.5*10^{-5}}{0.000405}[/tex]

        [tex]\Delta \rho = 101 \ kgm^{-3}[/tex]

Thus the experimental value of density is

             [tex]\rho = 1.05*10^{3} \ kg/m^3 \pm 101 \ kg/m^3[/tex]

                     

     

pls what is the difference between Ac power and dc power​

Answers

Answer:

The difference between AC and DC lies in the direction in which the electrons flow. In DC, the electrons flow steadily in a single direction, or "forward." In AC, electrons keep switching directions, sometimes going "forward" and then going "backward."

The Great Lakes are all part of what? The Mississippi River The St. Lawrence Seaway A large body of salt lakes The Missouri River

Answers

Answer:

St Lawrence Sea way

Explanation:

The great lake connects the middle of North America which is at the Canada-United states border connecting to the Atlantic Ocean through the St Lawrence River.

A 0.25 kg steel ball is tied to the end of a string and then whirled in a vertical circle at a constant speed v. The length of the string is 0.62 m, and the tension in the string when the ball is at the top of the circle is 4.0 N. What is v

Answers

Answer:

Explanation:

Let the tension in the string be T . At the top of the circle , total force acting on them = T + mg . This will provide centripetal force

T + mg = m v² / r

4 + .25 x 9.8 = .25 x v² / .62

6.45 = .25 v² / .62

v² = 16

v = 4 m /s .

A string is stretched between fixed supports separated by 72.0 cm. It is observed to have resonant frequencies of 370 and 555 Hz, and no other resonant frequencies between these two.(a) What is the lowest resonant frequency for this string?(b) What is the wave speed for this string?

Answers

Answer:

(a) f = 185 Hz

(b) v = 266.4 m/s

Explanation:

(a) The lowest frequency can be calculated by using the following formula for the calculation of the modes (resonant frequencies) in a string:

[tex]f_n=\frac{nv}{2L}[/tex]

[tex]f_n=nf[/tex]

n: order of the mode

v: velocity of the waves in the string

L: length of the string = 72.0cm = 0.72m

fn: frequency of the n-th mode

With the information about two consecutive modes you can find the lowest resonant frequency. First you find the resonant mode n:

[tex]f_n=nf\\\\f_{n-1}=(n-1)f\\\\\frac{f_n}{f_{n-1}}=\frac{n}{n-1}[/tex]

you solve the previous equation for n:

[tex](n-1)f_n=nf_{n-1}\\\\555n-555=370n\\\\n=3[/tex]

With this information you can calculate the lowest resonant frequency:

[tex]f_n=nf\\\\f=\frac{f_n}{n}=\frac{555}{3}=185Hz[/tex]

b) You have information about two consecutive modes fn, fn-1. Then, you can calculate the velocity of the waves:

[tex]f_{n}-f_{n-1}=n\frac{v}{2L}-(n-1)\frac{v}{2L}\\\\f_n-f_{n-1}=\frac{v}{2L}\\\\v=2L(f_n-f_{n-1})[/tex]

fn = 555 Hz

fn-1: 370 Hz

[tex]v=2(0.72m)(555-370)Hz=266.4\frac{m}{s}[/tex]´

hence, the velocityof the waves in the string is 266.4 m/s

Astronauts are testing the gravity on a new planet. A rock is dropped between two photogates that are 0.5 meters apart. The first photogate reads a velocity of 1.2 m/s and the the second photogate reads a velocity of 4.3 m/s . What is the acceleration of gravity on this new planet?

Answers

Answer:

a = 17 m / s²

Explanation:

For this experiment that the astronauts are carrying out, the value of the relation of gravity is cosecant, therefore we can use the kinematic relations

         v² = v₀² + 2a y

They indicate the initial speed 1.2 m / s the final speed 4.3 m / s and the distance remembered 0.5 m

we clear

        a = (v² - v₀²) / 2y

we calculate

       a = (4.3² -1.2²) / 2 0.5

       a = 17 m / s²

this is the gravity of the new planet

Using a density of air to be 1.21kg/m3, the diameter of the bottom part of the filter as 0.15m (assume circular cross-section), and the power fit of your Trendline equation,calculate the drag coefficient. Solve for it first (see video) and then plug in the values.

Answers

Answer:

The  drag coefficient is  [tex]D_z = 1.30512[/tex]  

Explanation:

From the question we are told that

     The density of air is  [tex]\rho_a = 1.21 \ kg/m^3[/tex]

     The diameter of bottom part is  [tex]d = 0.15 \ m[/tex]

The  power trend-line  equation is mathematically represented as

      [tex]F_{\alpha } = 0.9226 * v^{0.5737}[/tex]

let assume that the velocity is  20 m/s

Then

      [tex]F_{\alpha } = 0.9226 * 20^{0.5737}[/tex]

       [tex]F_{\alpha } = 5.1453 \ N[/tex]

The drag coefficient is mathematically represented as

      [tex]D_z = \frac{2 F_{\alpha } }{A \rho v^2 }[/tex]

Where  

     [tex]F_{\alpha }[/tex] is the drag force

      [tex]\rho[/tex] is the density of the fluid

       [tex]v[/tex] is the flow velocity

       A is the area which mathematically evaluated as

       [tex]A = \pi r^2 = \pi \frac{d^2}{4}[/tex]

substituting values

     [tex]A = 3.142 * \frac{(0.15)^2}{4}[/tex]

     [tex]A = 0.0176 \ m^2[/tex]

Then

   [tex]D_z = \frac{2 * 5.1453 }{0.0176 * 1.12 * 20^2 }[/tex]

   [tex]D_z = 1.30512[/tex]  

Penny is adjusting the position of a stand up piano of mass mp = 150 kg in her living room. The piano is lp = 1.35 m in length. The piano is currently at an angle of θp = 36 degrees to the wall. Penny wants to rotate the piano across the carpeted floor so that it is flat up against the wall. To move the piano, Penny pushes on it at the point furthest from the wall. This piano does not have wheels, so you can assume that the friction between the piano and the rug acts at the center of mass of the piano.

Required:
a. Write an expression for the minimum magnitude of the force FS in N Penny needs to exert on the piano to get it moving. Assume the corner of the piano on the wall doesn't slide and the static friction between the rug and the piano is µs.
b. The coefficient of kinetic friction between the carpet and the piano is uk = 0.27. Once the piano starts moving, calculate the torque τ in N·m that Penny needs to apply to keep moving the piano at a constant angular velocity.
c. Calculate the amount of work Wp, in J Penny does on the piano as she rotates it.

Answers

Answer:

a) Fs = (μs*mp*g)/2  |  b) τ = Fs*lp  |  c) Wτ,constant = τΘ

Explanation:

a) Fs = (μs*mp*g)/2

b) τ = Fs*lp

c) Wτ,constant = τΘ

A 18-kg sled is being pulled along the horizontal snow-covered ground by a horizontal force of 30 N. Starting from rest, the sled attains a speed of 2.0 m/s in 8.5 m. Find the coefficient of kinetic friction between the runners of the sled and the snow. Num

Answers

Answer:

Coefficient of kinetic friction = 0.146

Explanation:

Given:

Mass of sled (m) = 18 kg

Horizontal force (F) = 30 N

FInal speed (v) = 2 m/s

Distance (s) = 8.5 m

Find:

Coefficient of kinetic friction.

Computation:

Initial speed (u) = 0 m/s

v² - u² = 2as

2(8.5)a = 2² - 0²

a = 0.2352 m/s²

Nweton's law of :

F (net) = ma

30N - μf = 18 (0.2352)

30 - 4.2336 = μ(mg)

25.7664 =  μ(18)(9.8)

μ = 0.146

Coefficient of kinetic friction = 0.146

At an accident scene on a level road, investigators measure a car’s skid mark (mass of car is M) to be of length d. It was a rainy day and the coefficient of friction was estimated to be μk.
A) Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.B) Why does the car's mass not matter?1) Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation.2) Since the work done by friction does not depend on mass.3) Since the change in kinetic energy and the work done by friction do not depend on mass.

Answers

Answer:

1) Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation

Explanation:

The kinetic  friction works against the kinetic energy of the car and the car stops when these two equalises .

friction force = μk x R , μk is coefficient of kinetic friction and R is reaction from the ground.

= μk x mg

work done by friction

= force x displacement

=  μk x mg x d

kinetic energy of car at the time of accident = 1/2 m v²

kinetic energy = work done by friction

1/2 m v² = μk x mg x d

d = v² / (2 μk x g)

v² = 2dμk g

v = √(2dμk g)

Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation

A subatomic particle created in an experiment exists in a certain state for a time of before decaying into other particles. Apply both the Heisenberg uncertainty principle and the equivalence of energy and mass to determine the minimum uncertainty involved in measuring the mass of this short-lived particle.

Answers

Answer:

Δm Δt> h ’/ 2c²

Explanation:

Heisenberg uncertainty principle, stable uncertainty of energy and time, with the expressions

     ΔE Δt> h ’/ 2

     h’= h / 2π

to relate this to the masses let's use Einstein's relationship

      E = m c²

let's replace

     Δ (mc²) Δt> h '/ 2

the speed of light is a constant that we can condense exact, so

      Δm Δt> h ’/ 2c²

     

Other Questions
I need these ready in 20 minutes. please help me. I'd really appreciate it! Variations to the forehand stroke are not allowed. True False A student takes his 2 dogs for a walk. He lets them off their leash in a field where Edison runs at 10 m/s and Einstein runs at 8 m/s. The student determines the angle between the dogs is 25, how far are the dogs from each other in 5 seconds? In this lab, you determined the combination of humidity, air temperature, and air pressure that create weather patterns. is the amount of water vapor in the air compared to the amount of water vapor the air can actually hold. is a measure of how hot or cold the air is, and is the force exerted per unit area by the particles in the air. These conditions influence weather patterns. HELP FAST I WILL MARK BRAINLIEST!!!! WORTH 40 POINTS!!!!! Using a named case study/location,(london docklands) discuss how and why the settlement changed over time In a survey of 150 people, 60 like cricket only 40 like football onlyand 30 do not like them, by drawing Venn-diagram firid the numberof people who like both: (X+3)/6=5/4 what is x Irony is abetween what is expected to happen and what actually happens. Technology transfer agreements: Select one: a. protect "distinctive" or "famous" marks from unauthorized uses only when confusion is likely to occur. b. permit a company to quickly penetrate a foreign market without incurring the substantial financial and legal risks associated with direct investment. c. prevent an intellectual property owner from granting to another the right to use protected technology in return for some form of compensation. d. assert that priority of trademark rights in the United States depends upon the priority of use anywhere else in the world. (25 POINTS)Miranda sat in the high school computer lab typing like mad. It was 8:30 a.m., and her 1,000-word report on The Catcher in the Rye was due at 9:00. For the past hour, she had been flipping through the ratty pages of the old paperback trying to discern the major plot points and then typing out a few sentences that she hoped were logical. The only reason she was able to get into the lab that early was because she was one of Mrs. Brodys assistants, but a couple of hours in the lab didnt make up for weeks of zoning out in English class.Miranda could kick herself, but she was too busy skimming through her notes and attempting to remember somethinganything!that Mr. Giuffreda had talked about. Mr. Giuffreda was a tough grader, and Miranda did not work well under pressurenot a great combination. On top of all that, Miranda could hear her mothers voice in her head: One more bad grade in English, young lady, and no more soccer team. Miranda failed to see the relationship between soccer and book reports, but she also knew her mother wasnt kidding. When she had slacked off in geometry last semester, her mother had taken away her cell phone for a month. Another time, when Miranda had missed her curfewagain and againshe had gotten grounded for two weeks.Still typing, Miranda thought about Mr. Giuffreda. He expected nothing but the bestand then some. He never gave extensions unless someone had a family emergency, and he had a terrible habit of brushing off even the most creative excuses. Anyway, Miranda didnt need an extra day or two. She needed time to read the entire novel again. Miranda ran a word count361. She checked her watch8:45. She flipped to the end of the book trying desperately to remember the ending, but nothing was coming to her. Why hadnt she paid attention?At 8:55, she had a whopping, miraculous 402 words. The homeroom bell had rung five minutes ago, and students were filing into the lab for first period. Mirandas fingers were still flying, but by 8:59, Mrs. Brody asked Miranda to leave so she could start class on time. Miranda saved her work on her USB drive, collected her pages from the printer, and slung her knapsack over her shoulder. Then she trudged down the hall to Mr. Giuffredas class as slowly as possible, even though she knew she would be late and would probably get detention.Select the correct answer.What can be inferred from the passage?A. Miranda will no longer be Mrs. Brody's assistant.B. Miranda did not finish her book report on time.C. Miranda will ask Mr. Giuffreda for an extension.D. Miranda usually does a lot better in English class. What is the quotient of (x3-x2-17x-15) / (x-5) Once there was a king. He was (a) _______ [know, knows, known, knowing] forhis benevolence. Everyday he (b) _______ [feed, fed, feeds, feeding] the hungryand (c) ________ [gives, gave, give, given] clothes to the poor before he (d) ____[take, took, takes, taking] his food. He (e) _______ [do, does, did, doing] so formany Graph the solution of the inequality.-4 < 2t < 2PLZ HELP NOW The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371.2 K. What is the enthalpy of combustion of octane? The specific heat capacity of water is 4.18 J/K g.A. -5448 kJ/molB. 1226 kJ/molC. -1226 kJ/molD. 293.25 kJ/mol How did slave trade lead to colonization of Africa? Monique made several batches of soup for a potluck supper. Each batch required 3/4 of a pound of potatoes, and she used a total of 6 1/2 pounds of potatoes. How many batches of soup did Monique make?Which division and multiplication problems could represent this scenario? Check all the apply.A)3/4 divided by 13/2B)13/2 divided by 3/4C)3/4(13/2)D)13/2(3/4)E)13/2(4/3) z2 (z squared) when z = 0.7 help us out in a triangle, what is the 3rd angle measure if the other two angles are each 60 Using the following image, find the midpoint of the line by completing the problems below. The midpoint is what? solve the equation x^2 + 4x - 7By completing the square give answer correct to two decimal places.( p.s the answer is not -5.32 or 1.32 )